Cho \(a;b;c\in R\) thoả mãn \(\left(a^4+b^4\right)\left(b^4+c^4\right)\left(c^4+a^4\right)=8\)
C/m \(\left(a^2-ab+b^2\right)\left(b^2-bc+c^2\right)\left(c^2-ca+a^2\right)\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ đề cho bổ sung là cho tam giác ABC đều nội tiếp đường tròn ( O ) vì mình đã từng làm rồi
lời giải :
A B C O M D
a) vì MD = MB nên \(\Delta MBD\)cân tại M
\(\widehat{BMD}=\widehat{BCA}=60^o\)( cùng chắn cung AB )
\(\Rightarrow\)\(\Delta MBD\)đều
b) Xét \(\Delta MBC\)và \(\Delta BDA\)có :
MB = BD ; BC = AB ; \(\widehat{MBC}=\widehat{DBA}\)( cùng cộng góc DBC bằng 60 độ )
\(\Rightarrow\Delta MBC=\Delta DBA\left(c.g.c\right)\)suy ra MC = AD
c) Mà MB = MD ( câu a )
nên MC + MB = MD + AD = MA
d) Ta có : MA là dây cung của ( O ; R ) \(\Rightarrow MA\le2R\)
\(\Rightarrow MB+MC+MA=2MA\le4R\)( không đổi )
Dấu " = " xảy ra \(\Leftrightarrow\)MA là đường kính hay M là điểm chính giữa của cung BC
\(\hept{\begin{cases}x^2+y^2=10\\x+y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=10\\\left(x+y\right)^2=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\xy=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1;y=3\\x=3;y=1\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2=10\\x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=10\\x^2+2xy+y^2=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=10\\2xy+10=16\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=10\\2xy=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\xy=3\end{cases}}\)
\(\Rightarrow k^2-4k+3=0\)
\(\Leftrightarrow\left(k-1\right)\left(k-3\right)=0\Leftrightarrow\orbr{\begin{cases}k=1\\k=3\end{cases}}\)
Vậy (x,y) = (1,3) và hoán vị
Bài này dài quá nên xin trả lời ngắn gọn là p thuộc {2;7;11}
Tham khảo tại :
https://julielltv.wordpress.com/2013/09/02/bai-toan-so-chinh-phuong-phuong-trinh-nghiem-nguyen/
_Minh ngụy_
\(\hept{\begin{cases}x+y+\frac{1}{y}=\frac{9}{x}\left(1\right)\\x+y-\frac{4}{x}=\frac{4y}{x^2}\left(2\right)\end{cases}}\)
\(Đkxđ:\hept{\begin{cases}x\ne0\\y\ne0\end{cases}}\)
Từ \(\left(2\right)\Rightarrow x+y-\frac{4}{x}-\frac{4y}{x^2}=0\)
\(\Leftrightarrow x+y-\frac{4}{x^2}\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(1-\frac{4}{x^2}\right)=0\)
\(\Leftrightarrow1-\frac{4}{x^2}=0\)
\(\Leftrightarrow x\ne\pm2\)
\(2+y+\frac{1}{y}=\frac{9}{2}\Leftrightarrow2y^2+2=5y\)
\(\Leftrightarrow2y^2-5y+2=0\)
\(\Leftrightarrow\left(2y-1\right)\left(y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\left(tm\right)\\y=\frac{1}{2}\left(tm\right)\end{cases}}\)
\(-2+y+\frac{1}{y}=\frac{9}{-2}\Leftrightarrow2y^2+2=-5y\)
\(\Leftrightarrow2y^2+5y+2=0\)
\(\Leftrightarrow\left(2y+1\right)\left(y+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=-\frac{1}{2}\left(tm\right)\\y=-2\left(tm\right)\end{cases}}\)
Vậy \(n_0\left(x,y\right)\) của hệ là: \(\left(\frac{1}{2};2\right);\left(2;2\right);\left(-\frac{1}{2};-2\right);\left(-2;-2\right)\)
Ta có: \(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+\frac{1}{z-1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng BĐT Bunhiacôpski ta có:
\(\left(1+x+1+y+1+z\right)\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\ge\left(1+1+1\right)^2=3^2=9\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}=\frac{9}{4}\)
\(\Rightarrow A\le3-\frac{9}{4}=\frac{12}{4}-\frac{9}{4}=\frac{3}{4}\)
\(\Rightarrow Max_A=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Thay \(x+y+z=1\)vào biểu thức
\(\Rightarrow P=\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2x+y+z}=\frac{x}{x+y+x+z}\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{y}{x+2y+z}=\frac{y}{x+y+y+z}\le\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{z}{x+y+2z}=\frac{z}{x+z+y+z}\le\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)
\(\Rightarrow VT\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\)\(+\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
\(\Rightarrow VT\le\frac{x}{4\left(x+y\right)}+\frac{x}{4\left(x+z\right)}+\frac{y}{4\left(x+y\right)}+\frac{y}{4\left(y+z\right)}+\frac{z}{4\left(x+z\right)}\)\(+\frac{z}{4\left(y+z\right)}\)
\(\Rightarrow VT\le\frac{x}{4\left(x+y\right)}+\frac{y}{4\left(x+y\right)}+\frac{x}{4\left(x+z\right)}+\frac{z}{4\left(x+z\right)}+\frac{y}{4\left(y+z\right)}\)\(+\frac{z}{4\left(y+z\right)}\)
\(\Rightarrow VT\le\frac{x+y}{4\left(x+y\right)}+\frac{x+z}{4\left(x+z\right)}+\frac{y+z}{4\left(y+z\right)}\)
\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow P\le\frac{3}{4}\)
Vậy \(P_{max}=\frac{3}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)
Chúc bạn học tốt !!!
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
\(A=\frac{\frac{1}{2}a^2\left(\sqrt[3]{b}+\sqrt[3]{c}+1\right)\left[\left(\sqrt[3]{b}-\sqrt[3]{c}\right)^2+\left(\sqrt[3]{b}-1\right)^2+\left(\sqrt[3]{c}-1\right)^2\right]}{2\left(a+2\right)\left(a+\sqrt[3]{bc}\right)}\ge0\)
\(\Sigma_{cyc}\frac{a^2}{a+\sqrt[3]{bc}}=\Sigma_{cyc}A+\Sigma_{cyc}\frac{2\left(a-1\right)^2}{3\left(a+2\right)}+\frac{5}{6}\left(a+b+c\right)-1\ge\frac{5}{6}\left(a+b+c\right)-1=\frac{3}{2}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
Chứng minh rằng : \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)
\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)
\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)
\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{cases}}\)
\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\left(đpcm\right)\)
Vì \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)
Mà \(\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{3}{2}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Ta chứng minh: \(2\left(a^2-ab+b^2\right)^2\ge b^4+a^4\left(1\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)^2\ge0\)( Luôn đúng \(\forall a;b\))
Tương tự có: \(2\left(b^2-bc+c^2\right)^2\ge b^4+c^4\left(2\right)\)
Và: \(2\left(c^2-ca+a^2\right)^2\ge a^4+c^4\left(3\right)\)
Ta nhân các vế trên ta được: \(8\left(a^2-ab+b^2\right)^2\left(b^2-bc+c^2\right)^2\left(c^2-ca+a^2\right)^2\ge\left(a^4+b^4\right)\left(b^4+c^4\right)\left(c^4+a^4\right)=8\)
Hay: \(\left(a^2-ab+b^2\right)\left(b^2-bc+c^2\right)\left(c^2-ca+a^2\right)\ge1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Trâu bò:
Giả sử c = min{a,b,c}
Đặt a =x +c; b = y +c;c=c thì x,y >= 0
C/m: \(8\left[\left(a^2-ab+b^2\right)\left(b^2-bc+c^2\right)\left(c^2-ca+a^2\right)\right]^2\ge\left(a^4+b^4\right)\left(b^4+c^4\right)\left(c^4+a^4\right)\)
Xét hiệu hai vế thu được:
\(c*(12*x^3*y^8-8*x^4*y^7+16*x^5*y^6+16*x^6*y^5-8*x^7*y^4+12*x^8*y^3)+c^2*(18*x^2*y^8-16*x^3*y^7+60*x^4*y^6+60*x^6*y^4-16*x^7*y^3+18*x^8*y^2)+c^3*(12*x*y^8+16*x^2*y^7+88*x^4*y^5+88*x^5*y^4+16*x^7*y^2+12*x^8*y)+c^4*(6*y^8+16*x*y^7+32*x^2*y^6-32*x^3*y^5+242*x^4*y^4-32*x^5*y^3+32*x^6*y^2+16*x^7*y+6*x^8)+7*x^4*y^8+c^5*(16*y^7+16*x*y^6+88*x^3*y^4+88*x^4*y^3+16*x^6*y+16*x^7)-16*x^5*y^7+c^6*(24*y^6-16*x*y^5+60*x^2*y^4+60*x^4*y^2-16*x^5*y+24*x^6)+24*x^6*y^6+c^7*(16*y^5-8*x*y^4+16*x^2*y^3+16*x^3*y^2-8*x^4*y+16*x^5)-16*x^7*y^5+c^8*(8*y^4-16*x*y^3+24*x^2*y^2-16*x^3*y+8*x^4)+7*x^8*y^4\)Dấu " * " là nhân.
Dễ thấy nó đúng -> qed