K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2020

YOU cũng học tốt nha^_^

24 tháng 1 2020

Phương trình được viết lại:

\(4x^2+4x+1=4y^4+4y^3+y^2+3y^2+4y+1\)

\(\Leftrightarrow4x^2+4x+1=\left(2y^2+y\right)^2+3y^2+4y+1\)

\(\Leftrightarrow\left(2x+1\right)^2=\left(2y^2+y+1\right)^2+2y-y^2\)

Nếu: \(y=-1\)và \(2y-y^2< 0\Rightarrow3y^2+4y+1>0\)

\(\Rightarrow\left(2y^2+y\right)^2< \left(2x+1\right)^2< \left(2y^2+y+1\right)^2\)

Ta thấy vô lí vì \(\left(2y^2+y\right)^2;\left(2y^2+y+1\right)\)là 2 số chính phương liên tiếp.

Vì thế nên \(y\)nhận 1 trong những giá trị: \(-1;0;1;2\)

  • \(y=-1\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
  • \(y=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
  • \(y=1\Rightarrow\)Không tồn tại \(x\)
  • \(y=2\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)

Vậy các nghiệm nguyên của phương trình là: \(\left(x,y\right)\in\left\{\left(0;-1\right),\left(-1;-1\right);\left(0;0\right);\left(-1;0\right);\left(5;2\right);\left(-6;2\right)\right\}\)