K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sau ngày thứ nhất thì số cây còn lại chiếm:

\(1-\dfrac{3}{8}=\dfrac{5}{8}\)(tổng số cây)

15 cây cuối cùng chiếm: \(\dfrac{5}{8}\cdot\left(1-\dfrac{4}{7}\right)=\dfrac{5}{8}\cdot\dfrac{3}{7}=\dfrac{15}{56}\)(tổng số cây)

Tổng số cây là \(15:\dfrac{15}{56}=56\left(cây\right)\)

13 tháng 5 2024

a) vì M nằm giữa đoạn thẳng AB nên ta có :

AM + MB = AB

AM + MB = 12 cm

Mà MA = MB = 12 : 2 = 6 cm 

Vậy MB dài 6cm

b) Câu b bị thiếu đề nên mik ko giải dc =(

AH
Akai Haruma
Giáo viên
14 tháng 5 2024

Lời giải:
\(1-A=\frac{10^{2023}-10^{2022}}{10^{2023}+2024}=\frac{9.10^{2022}}{10^{2023}+2024}=\frac{9}{10+\frac{2024}{10^{2022}}}< \frac{9}{10}=1-\frac{1}{10}=1-\frac{10^{2023}}{10^{2024}}=1-B\)

$\Rightarrow A>B$

AH
Akai Haruma
Giáo viên
14 tháng 5 2024

Lời giải:
Vì số tự nhiên đó chia 17 dư 7 nên đặt nó là $A=17k+7$ với $k$ là số tự nhiên.

$A=17k+7$ chia 7 dư 4

$\Rightarrow 17k+7-4\vdots 7$

$\Rightarrow 17k+3\vdots 7$

$\Rightarrow 17k+3+14\vdots 7$

$\Rightarrow 17(k+1)\vdots 7\Rightarrow k+1\vdots 7$

$\Rightarrow k=7m-1$ với $m$ tự nhiên.

Khi đó: $A=17k+7=17(7m-1)+7=119m-10=119(m-1)+109$

Vậy số đó chia 119 dư 109.

a: Dãy dữ liệu này là số liệu

b: Chỗ không hợp lí là số 94, vì khó có chuyện mà một lớp có 94 bạn

4
456
CTVHS
13 tháng 5 2024

a, Dãy dữ liệu trên là số liệu.

b, Dữ liệu không hợp lí là : 94

ĐKXĐ: \(n\ne-\dfrac{1}{2}\)

Để A là số nguyên thì \(3⋮2n+1\)

=>\(2n+1\in\left\{1;-1;3;-3\right\}\)

=>\(2n\in\left\{0;-2;2;-4\right\}\)

=>\(n\in\left\{0;-1;1;-2\right\}\)

13 tháng 5 2024

\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dots+\dfrac{1}{2024^2}\)

+, Ta thấy:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(...\)

\(\dfrac{1}{2024^2}< \dfrac{1}{2023.2024}\)

Suy ra: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2024^2}\)

\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dots+\dfrac{1}{2023.2024}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dots+\dfrac{1}{2023}-\dfrac{1}{2024}\)

\(=1-\dfrac{1}{2024}< 1\)

\(\Rightarrow S< 1\) (1)

+, Lại có: \(\dfrac{1}{2^2}>0\)

\(\dfrac{1}{3^2}>0\)

\(\dfrac{1}{4^2}>0\)

\(...\)

\(\dfrac{1}{2024^2}>0\)

Suy ra: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2024^2}>0\)

\(\Rightarrow S>0\) (2)

Từ (1) và (2) \(\Rightarrow0< S< 1\)

\(\Rightarrow\) S không phải là số tự nhiên

$Toru$

a: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOt}< \widehat{xOy}\left(50^0< 120^0\right)\)

nên tia Ot nằm giữa hai tia Ox và Oy

b: Ta có: tia Ot nằm giữa hai tia Ox và Oy

=>\(\widehat{xOt}+\widehat{tOy}=\widehat{xOy}\)

=>\(\widehat{tOy}+50^0=120^0\)

=>\(\widehat{tOy}=70^0\)

c: Ta có: \(\widehat{xOt}+\widehat{tOz}=\widehat{xOz}\)

=>\(\widehat{tOz}+50^0=180^0\)

=>\(\widehat{tOz}=130^0\)

14 tháng 5 2024

m3 = 75.n (m; n ϵ N*)

m3 - 75n = 0

Ta có: 75 = 1 x 75 = 3 x 25 = 15 x 5

Lập phương nhỏ nhất từ các tích trên:

\(1\times75\rightarrow75^3\)

\(3\times25\rightarrow75^3\)

\(15\times5\rightarrow15\times5\times3\times15\rightarrow15^3\)

Do 153 là giá trị nhỏ nhất ⇒ m = 15

⇒ n = 153 : 75 = 45

Vậy m = 15 và n = 45.

\(2\left(x+\dfrac{-5}{2}\right)^2+\dfrac{-5}{12}=\dfrac{1}{12}\)

=>\(2\left(x-\dfrac{5}{2}\right)^2=\dfrac{1}{12}+\dfrac{5}{12}=\dfrac{6}{12}=\dfrac{1}{2}\)

=>\(\left(x-\dfrac{5}{2}\right)^2=\dfrac{1}{4}\)

=>\(\left[{}\begin{matrix}x-\dfrac{5}{2}=\dfrac{1}{2}\\x-\dfrac{5}{2}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)