Cho các số dương a+b+c =1 Tìm giá trị lớn nhất của biểu thức \(P=\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m, n để đa thức P ( x) là đa thức 0 với P (x) = ( 4m + 6n - 4) x + ( 3m - 2n - 4 )
Giải: P (x) là đa thức 0
<=> \(\hept{\begin{cases}4m+6n-4=0\\3m-2n-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{16}{13}\\n=-\frac{2}{13}\end{cases}}\)
Kết luận:...
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S=2a-1\\S^2-2P=a^2+2a-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}S=2a-1\\P=\frac{3a^2-6a+4}{2}\end{cases}}\)
Để hệ có nghiệm thì
\(S^2\ge4P\)
\(\Leftrightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)
Giờ tìm giá trị nhỏ nhất của
\(P=\frac{3a^2-6a+4}{2}\)dễ thấy \(P_{min}\)tại \(a=\frac{4-\sqrt{2}}{2}\)(Đoạn này không khó nên tự làm nha)
Ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\sqrt{x}+3-2}{\sqrt{x}+3}=1-\frac{2}{\sqrt{x}+3}\)
Lại có: \(\sqrt{x}+3\ge3\)nên:
\(\Rightarrow\frac{2}{\sqrt{x}+3}\le\frac{2}{3}\)
\(\Rightarrow1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}+3=3\Rightarrow x=0\)
Vậy \(Min=\frac{1}{3}\Leftrightarrow x=0\)
Với x = 4.
\(\frac{\sqrt{4}}{\sqrt{4}-1}=\frac{2}{1}=2>0\)
Nên giá trị lớn nhất không thể bằng 0 được. Em thử xem mình sai chỗ nào??
Ta có: \(\frac{\sqrt{x}}{\sqrt{x}-1}=\frac{\sqrt{x}-1+1}{\sqrt{x}-1}=1+\frac{1}{\sqrt{x}-1}\)
Lại có: \(\sqrt{x}-1\ge-1\forall x\)nên:
\(\Rightarrow\frac{1}{\sqrt{x}-1}\le-1\)
\(\Rightarrow1+\frac{1}{\sqrt{x}-1}\le1-1=0\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)
Vậy \(Max=0\Leftrightarrow x=0\)
Xét \(\Delta COM\)và \(\Delta CED\)có:
\(\widehat{COM}=\widehat{CED}=90^0\)
\(\widehat{ECD}\): góc chúng
Do đó \(\Delta COM\)\(\approx\Delta CED\left(g.g\right)\)
\(\Rightarrow\frac{CO}{CE}=\frac{CM}{CD}\Leftrightarrow CM.CE=CO.CD=R.2R=2R^2\)(1)
\(\Delta OBD\)vuông tại O nên \(BD^2=OB^2+OD^2\)(định lý Pythagoras)
\(=R^2+R^2=2R^2\)(2)
Từ (1) và (2) suy ra \(CM.CE+BD^2=2R^2+2R^2=4R^2\)
https://olm.vn/hoi-dap/detail/232384263245.html
Áp dụng BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có : \(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}\)
\(+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu lại ta có :
\(P\)\(\le\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{a+b+c}{4}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)