K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chiều dài bằng \(\frac{2}{3}\)chiều rộng?????

5 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\)và đặt \(2t=a+b=-c\Rightarrow t=-\frac{c}{2}\)

+)Nếu \(c\ge0\) thì \(a,b\ge0\). Khi đó: \(P\ge3\)

Đẳng thức xảy ra khi \(a=b=c=0\)

+) Nếu \(c< 0\Rightarrow t>0\). Ta có:

\(P\ge\frac{\left(a^2+b^2+2\right)^2}{2}+\left(c^2+1\right)^2+\frac{3\sqrt{6}c\left(a+b\right)^2}{2}\) (vì c < 0)

\(\ge\frac{\left[\frac{\left(a+b\right)^2}{2}+2\right]^2}{2}+\left(c^2+1\right)^2+3\sqrt{6}c.\frac{\left(a+b\right)^2}{2}\)

\(=\frac{\left(2t^2+2\right)^2}{2}+\left(c^2+1\right)^2+6\sqrt{6}t^2c\)

\(=\frac{\left[2\left(-\frac{c}{2}\right)^2+2\right]^2}{2}+\left(c^2+1\right)^2+6\sqrt{6}\left(-\frac{c}{2}\right)^2c\)

\(=\frac{9}{8}c^2\left(c+\frac{2\sqrt{6}}{3}\right)^2+3\ge3\)

\(\left(a;b;c\right)=\left(\sqrt{\frac{2}{3}};\sqrt{\frac{2}{3}};-2\sqrt{\frac{2}{3}}\right)\) (và các hoán vị, trong trường hợp tổng quát)

Vậy....

P/s: Em không chắc lắm, chưa check lại.

5 tháng 2 2020

Theo đề ta có: \(xy+yz+zx\le3xyz\)

\(\Rightarrow\hept{\begin{cases}\sqrt[3]{x^2}\ge\sqrt{x}\\\sqrt[3]{y^2}\ge\sqrt{y}\\\sqrt[3]{z^2}\ge\sqrt{z}\end{cases}}\)

\(\Rightarrow\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{x^2}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

5 tháng 2 2020

Pt \(\left(m+2\right)x^2+4mx+4m-1=0\)có hai nghiệm phân biệt khi và chỉ khi:

\(\hept{\begin{cases}m+2\ne0\\\left(2m\right)^2-\left(m+2\right)\left(4m-1\right)>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m\ne-2\\4m^2-\left(4m^2+7m-2\right)>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m\ne-2\\-7m+2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m\ne-2\\m< \frac{2}{7}\end{cases}}\)

Vậy \(\hept{\begin{cases}m\ne2\\m< \frac{2}{7}\end{cases}}\)Pt có hai nghiệm phân biệt.