K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^2+x+3=3x\sqrt{x+3}\left(1\right)\)

\(ĐK:x\ge-3\)

\(\left(1\right)\Leftrightarrow\left(x+3\right)+2x^2=3x\sqrt{x+3}\)

Đặt \(\sqrt{x+3}=a,x=b\left(a\ge0\right)\)

\(\left(1\right)\Leftrightarrow a^2+2b^2=3ab\)

\(\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=x\\\sqrt{x+3}=2x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2-x-3=0\\4x^2-x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1\pm\sqrt{13}}{2}\\x=1,x=\frac{3}{4}\end{cases}}\)

Vậy............

8 tháng 2 2020

\(Đkxđ:x\ge-3\)

Với đk trên pt trở thành:  \(2\left(x\right)^2-3\left(x\right)\left(\sqrt{x+3}\right)+\left(\sqrt{x+3}\right)^2=0\)

\(\Leftrightarrow2\left(x\right)^2-2\left(x\right)\left(\sqrt{x+3}\right)-\left(x\right)\left(\sqrt{x+3}\right)+\left(\sqrt{x+3}\right)^2=0\)

\(\Leftrightarrow2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=x\left(1\right)\\\sqrt{x+3}=2x\left(2\right)\end{cases}}\)

  • \(\left(1\right):\sqrt{x+3}=x\Leftrightarrow\hept{\begin{cases}x\ge0\\x+3=x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2-x-3=0\end{cases}}\)

\(\Leftrightarrow x\ge0\) Hoặc \(\orbr{\begin{cases}x=\frac{1+\sqrt{13}}{2}\\x=\frac{1-\sqrt{13}}{2}\end{cases}}\Leftrightarrow x=\frac{1+\sqrt{13}}{1}\)

  • \(\left(2\right):\sqrt{x+3}=2x\Leftrightarrow\hept{\begin{cases}x\ge0\\x+3=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\4x^2-x-3=0\end{cases}}\)

\(\Leftrightarrow x\ge0\) Hoặc \(\orbr{\begin{cases}x=1\\x=-\frac{3}{4}\end{cases}}\Leftrightarrow x=1\)

So với đk ta đc tập nghiệm: \(S=\left\{1;\frac{1+\sqrt{13}}{2}\right\}\)

17 tháng 5 2020

Cho hình thang ABCD vuông tại A và D. Gọi E là trung điểm AD. Kẻ AH vuông góc với EB tại H, DI vuông góc với CE tại I. Chứng minh tứ giác BHIC nội tiếp đường tròn.VÀ chứng minh EK vuông góc vs BC

8 tháng 2 2020

Đường thẳng đoạn chắn qua M (3,1) có pt và a+3b min
a+3b=12, b= a/3 
a=6, b=2
Đường thẳng d cắt trục hoành tai điểm A(6,0), B(0,2)

??
 

Giả sử \(A\left(\frac{1}{a},0\right),B\left(0,\frac{1}{b}\right)\). Phương trình đường thẳng d cần tìm có dạng: \(ax+by=1\)

Vì  \(M\left(3,1\right)\in d\)nên \(3a+b=1\)

Ta có : \(OA+3OB=\left|\frac{1}{a}\right|+\left|\frac{3}{b}\right|\ge\left|\frac{1}{a}+\frac{3}{b}\right|=\left|\frac{3a+b}{a}+\frac{3\left(3a+b\right)}{b}\right|=\left|6+\frac{b}{a}+\frac{9a}{b}\right|\)

Áp dụng bất đẳng thức AM-GM ta có : \(\frac{b}{a}+\frac{9a}{b}\ge2\sqrt{\frac{9ab}{ab}}=6\)

\(\Rightarrow OA+3OB\ge\left|6+6\right|=12\)

Dấu "=" xảy ra khi: \(a=\frac{1}{6},b=\frac{1}{2}\)

8 tháng 2 2020

ĐK: \(x\ge-2;y\ge0\)

\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+2}\left[\left(x+2\right)-y+1\right]=\sqrt{y}\\3\left(x^2+4x+4\right)-2\left(x+2\right)-y\left(x+2\right)-y-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+2}\left[\left(x+2\right)-y+1\right]=\sqrt{y}\\3\left(x+2\right)^2-2\left(x+2\right)-y\left(x+2\right)-y-9=0\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\left(a\ge0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)

\(\Rightarrow\)Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}a^3+a-ab^2=b\\3a^4-2a^2-a^2b^2-b^2-9=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a^2+ab+1\right)=0\\3a^4-2a^2-a^2b^2-b^2-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\left(a^2+ab+1>0\right)\\3a^4-2a^2-a^2b^2-b^2-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\2a^4-3a^2-9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2=b^2\\a^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)( thỏa mãn )

Kết luận: ...

7 tháng 2 2020

theo bđt cauchy-schwarz ta có \(P\ge\frac{\left(1+1+1\right)^2}{3+2\left(a^3+b^3+c^3\right)}=\frac{9}{3+2\left(a^3+b^3+c^3\right)}\)

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3=3abc}\)\(\Rightarrow P\ge\frac{9}{3+2\cdot3abc}=\frac{9}{3+6}=1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(P_{max}=1\Leftrightarrow a=b=c=1\)

7 tháng 2 2020

Sorry mình viết nhầm nha \(3\sqrt[3]{a^3b^3c^3}=3abc\)mới đúng nha

7 tháng 2 2020

gọi vận tốc của BT là x (km/h)(x>0)

gọi vận tốc của CBN là y (km/h) (y>0)

vì hai người gặp nhau khi BT đi đc 1h30` = 1,5h nên quãng đường của BT đi là 1,5/x (km)

                                                                                                                 CBN đi là 2/y (km)

vì làng và thị xã cách nhau 38 km nên ta có 1,5/x + 2/y = 38              (1)

sau 1h15` = 5/4h , BT đi đc 5x/4 (km)

                              CBN đi đc 5y/4 (km)

vì sau 5/4h thì hai người cách nhau 10,5km nên ta có 5x/4 + 5y/4 =27,5         (2)

từ (1) và (2) ta có hệ phương trình 

bn tự giải hệ nha , kết quả là x= 12;y=10