Cho \(x,y\ge0\)và \(x^2+y^2=1\).Chứng minh rằng: \(\frac{1}{\sqrt{2}}\le x^3+y^3< 1\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12 tháng 2 2020
bạn ơi bạn lấy cái đề ở đâu thế , mà cách đỉnh của 1 tứ giác cũng viết nữa
phải là BFEC chứ
12 tháng 2 2020
cái này bạn đặt ẩn phụ l là được
điều kiện \(x\ne-1;y\ne2\)
đặt \(t=\frac{x}{x+1}\) và \(u=\frac{1}{y-2}\)
\(\hept{\begin{cases}t+2u=8\\3t-u=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}t=2\\u=3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{x+1}=2\\\frac{1}{y-2}=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2x+2\\1=2y-4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=\frac{5}{2}\end{cases}}\)
vậy phương trình có nghiệm duy nhất \(\left(x;y\right)=\left(-2;\frac{5}{2}\right)\)
Ta có: \(x^2+y^2=1\)
\(\Rightarrow0\le x,y\le1\)
\(\Rightarrow x^3\le x^2;y^3\le y^2\)
\(\Rightarrow x^3+y^3\le x^2+y^2=1\) \((1)\)
Theo BĐT Cô-si ta có:
\(x^3+x^3+\frac{1}{2\sqrt{2}}\ge3x^2.\frac{1}{\sqrt{2}}\)
\(y^3+y^3+\frac{1}{2\sqrt{2}}\ge3y^2.\frac{1}{\sqrt{2}}\)
Cộng vế: \(\Rightarrow2\left(x^3+y^3\right)+\frac{1}{\sqrt{2}}\ge3\left(x^2+y^2\right)\frac{1}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)
\(\Rightarrow2\left(x^3+y^3\right)\ge\frac{2}{\sqrt{2}}\)
\(\Rightarrow x^3+y^3\ge\frac{1}{\sqrt{2}}\left(2\right)\)
\(\Rightarrow\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)
Từ giả thiết ta có: \(\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\Rightarrow\hept{\begin{cases}x^3\le x^2\\y^3\le y^2\end{cases}}\Rightarrow x^3+y^3\le x^2+y^2=1\left(1\right)\)
Lại có: \(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2\)
\(\Rightarrow x+y\le\sqrt{2}\)
\(1=\left(x^2+y^2\right)^2=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)\le\left(x+y\right)\left(x^3+y^3\right)\le\sqrt{2}\left(x^3+y^3\right)\)
\(\Rightarrow\frac{1}{\sqrt{2}}\le\left(x^2+y^2\right)\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow\frac{1}{\sqrt{2}}\le x^3+y^3< 1\left(đpcm\right)\)