K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Giúp mình với

12 tháng 4 2020

Chứng minh gì vậy bạn

18 tháng 2 2020

Với x,y>0 ta cm: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

=>\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

ÁP dụng vào bài toán ta có: 

\(\frac{1}{a+b+2c}=\frac{1}{a+c+b+c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow\frac{4ab}{a+b+2c}\le\frac{ab}{a+c}+\frac{ab}{b+c}\)

tương tự: \(\frac{4bc}{b+c+2a}\le\frac{bc}{a+b}+\frac{bc}{a+c};\frac{4ca}{c+a+2b}\le\frac{ca}{b+c}+\frac{ca}{a+b}\)

Cộng 3 bđt trên vế theo vế ta dc \(4\left(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\right)\le\frac{bc+ca}{a+b}+\frac{ab+ca}{b+c}+\frac{ab+bc}{a+c}=c+a+b\)

=>đpcm

Dấu "=" xảy ra <=> a=b=c

18 tháng 2 2020

a. thay m=1 vào pt(1): \(x^2-2.2x+2-4=0\)

<=>\(x^2-4x-2=0\)

\(\Delta'=\left(-2\right)^2-1.\left(-2\right)=4+2=6>0\)

=>\(x_1=-\left(-2\right)+\sqrt{6}=2+\sqrt{6};x_2=2-\sqrt{6}\)

Vậy,,,

b, \(\Delta'=\left[-\left(m+1\right)\right]^2-1.\left(2m-4\right)=m^2+2m+1-2m+4=m^2+5\)

Để pt(1) có 2 nghiệm phân biệt x1,x2 <=>\(\Delta'>0\Leftrightarrow m^2+5>0\) (luôn đúng)

Theo hệ thức vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-4\end{cases}}\)

Theo bài ra ta co;\(\frac{1}{x_1}+\frac{1}{x_2}=2\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=2\Leftrightarrow\frac{2m+2}{2m-4}=2\)

\(\Leftrightarrow2m+2=4m-8\Leftrightarrow2m=10\Leftrightarrow m=5\)