K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trên tia AM lấy I sao cho AM = MI => AI = 8 cm

Ta có tứ giác ABIC có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên ABIC là hình bình hành

=> AB = IC = 6 cm. Xét tam giác ACI có AC^2 = AI2 + CI2

Nên tam giác ACI vuông tại I. Ta có S(ABIC) = 2 S(AIC) = AI . CI = 48 (cm2)

suy ra S(ABC) = 1/2 S(ABIC) = 24 (cm2)

20 tháng 2 2020

Bài 1 : 

Áp dụng Cô - si ta có :
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{\left(a+1\right)b^2}{b^2+1}\le\left(a+1\right)-\frac{\left(a+1\right)b^2}{2b}\)\(=\left(a+1\right)-\frac{ab+b}{2}\)

Tương tự ta cũng có : \(\frac{b+1}{c^2+1}\le\left(b+1\right)-\frac{bc+c}{2};\frac{c+1}{a^2+1}\le\left(c+1\right)-\frac{ca+a}{2}\)

Cộng vế theo vế ta được: 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)\(\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge6-\frac{ab+bc+ca+3}{2}\)

Mặt khác ta có BĐT : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le3\)

Do đó : \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)

Dấu " = "  xảy ra khi và chỉ khi \(a=b=c=1\)

20 tháng 2 2020

Bài 2 : 

A B C D M N P Q O K I H

a) Ta có : \(MI=MA,QI=QD\)nên \(MQ\)là đường trung bình \(\Delta AID\) 

\(\Rightarrow MQ//AD\)

Tương tự NP là đường trung bình của \(\Delta BIC\)

\(\Rightarrow NP//BC\)

Do đó : \(NMQ=BAD=NPQ\)nên tứ giác MPNQ nội tiếp

b ) Kẻ \(OH\perp AB\)tại H và \(OK\perp CD\)tại K

Ta có : \(AB\perp CD\)

\(\Rightarrow OHIK\)là hình chữ nhật

Do đó \(AB^2+CD^2=4\left(BH^2+CK^2\right)=4\left(R^2-OH^2+R^2-OK^2\right)\)

\(=4\left(2R^2-OI^2\right)\)

Diện tích tứ giác MPNQ là : \(\frac{MN.PQ}{2}=\frac{AB.CD}{8}\le\frac{\left(AB+CD\right)^2}{16}=\frac{2R^2-OI^2}{4}\)không đổi

GTLN của diện tích tứ giác MNPQ là : \(\frac{2R^2-OI^2}{4}\), khi đó \(AB=CD\)

Chúc bạn học tốt !!!

ĐK:\(\hept{\begin{cases}x\ge\frac{2}{3}\\y\ge\frac{11}{3}\end{cases}}\)

Giải (1)

\(\left(1\right)\Leftrightarrow\left(x-y+3\right)\left(x-1\right)=0.\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=y\\x=1\end{cases}}\)

Xét x=1

\(\left(2\right)\Leftrightarrow5\left(\sqrt{3y-11}+\sqrt{y}\right)=15\)

\(\Leftrightarrow\sqrt{3y-11}+\sqrt{y}=3\)

\(\Leftrightarrow\left(\sqrt{3y-11}-1\right)+\left(\sqrt{y}-2\right)=0\)

\(\Leftrightarrow\frac{3\left(y-4\right)}{\sqrt{3y-11}+1}+\frac{y-4}{\sqrt{y}+2}=0\)

\(\Leftrightarrow\left(y-4\right)\left(\frac{3}{\sqrt{3y-11}+1}+\frac{1}{\sqrt{y}+2}\right)=0\)

Vì \(y\ge\frac{11}{3}\)nên \(\left(\frac{3}{\sqrt{3y-11}+1}+\frac{1}{\sqrt{y}+2}\right)>0\)

\(\Rightarrow y-4=0\Rightarrow y=4\left(tm\right)\)

Xét x+3=y

\(\left(2\right)\Leftrightarrow4x^2-24x+35=5\left(\sqrt{3x-2}+\sqrt{x+3}\right)\)

Áp dụng bđt AM-GM ta có

\(VP\le5\left(\frac{3x-2+1+x+3+1}{2}\right)=\frac{5\left(4x+3\right)}{2}\)

\(\Rightarrow2\left(4x^2-24x+35\right)\le20x+15\)

\(\Leftrightarrow2\left(4x^2-34x+\frac{55}{2}\right)\le0\)

\(\Leftrightarrow\left(2x-\frac{17}{2}\right)^2-\frac{179}{4}\le0\)(3)

mà \(x\ge\frac{2}{3}\Rightarrow\left(2x-\frac{17}{2}\right)^2-\frac{179}{4}\ge\frac{1849}{36}-\frac{179}{4}>0\)(mâu thuẫn với (3))

=> TH này không xảy ra 

Vậy (x,y)=(1,4)

21 tháng 2 2020

ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] 

Mới xem qua thì thấy dòng: thứ 3 từ dưới lên không đúng.

Nếu em thử lấy \(x=\frac{17}{4}>\frac{2}{3}\)

Vẫn thỏa mãn (3)