Cho 2 phương trình :x^2+ax+1=0 và x^2+bx+1=0.Chứng minh rằng :Nếu ab>=4 thì tồn tại ít nhất một trong 2 phương trình đã có nghiệm .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\)
\(=\sqrt{\left(\sqrt{3}^2\right)+2\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)\(+\sqrt{\left(\sqrt{3}^2\right)-2\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|+\left|\sqrt{3}-\sqrt{2}\right|\)
\(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)
\(=2\sqrt{3}\)
a) 3x (12x – 4) – 9x (4x – 3) = 30
<=> 36x2 – 12x – 36x2 + 27x = 30
<=> 15x = 30
Vậy x = 2.
b) x (5 – 2x) + 2x (x – 1) = 15
<=> 5x – 2x2 + 2x2 – 2x = 15
<=> 3x = 15
<=> x =5
Gọi vận tốc của ô tô ban đầu là x (x>0; km/h)
vận tốc của ô tô sau khi đi được 240km là y (y>0;km/h)
Vì sau khi đi được 240km thì ô tô tăng vận tốc thêm 10km/h nên ta có pt:
y - x = 10 (1)
Thời gian ô tô đi 240km đầu là 240x240x (giờ)
Thời gian ô tô đi nốt quãng đường còn lại là 280y280y (giờ)
Vì thời gian ô tô đi hết quãng đường là 8 giờ nên ta có pt:
240x240x + 280y280y = 8 (2)
Từ (1) => y = 10 + x
Thay vào (2) => 240x240x + 28010+x28010+x = 8
<=> 240.(10+x)+280xx.(10+x)240.(10+x)+280xx.(10+x) = 8
<=> 2400+240x+280xx.(10+x)2400+240x+280xx.(10+x) = 8
<=> 8x2 + 80x = 2400 + 520x
<=> 8x2 - 440x - 2400 = 0
<=> 8.(x2 - 55x - 300) = 0
<=> x2 - 60x + 5x - 300 = 0
<=> x.(x - 60) + 5.(x - 60) = 0
<=>[x−60=0x+5=0[x−60=0x+5=0
<=> [x=60(TMĐK)x=−5(loại)[x=60(TMĐK)x=−5(loại)
Vậy, vận tốc ban đầu của ô tô là 60km/h.
x2+ax+1=0
Δ1=a²−4
x2+bx+1=0
Δ2=b²−4
Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2
→ Hoặc Δ1=a²−4≥0
→ Hoặc Δ2=b²≥0