Bài 3: Cho hình thang vuông ABCD(A=D=90⁰). Đường chéo BD vuông gocd với cạnh bên BC và BD=BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có tam giác DBC =EBC(g.c.g)
\(\Rightarrow\)DB=EC
Ta có tam giác ADB=AEC(c.g.c)
\(\Rightarrow\)AD=AE
\(\Rightarrow\)Tam giác ADE cân
Mà D thuộc A;E thuộc AB
\(\Rightarrow\)Góc D = C (đồng vị)
\(\Rightarrow\) DE // BC
Mà BEDC là tứ giác \(\Rightarrow\) BEDC là hình thang
Mà góc B = C \(\Rightarrow\) BEDC là hình thang cân
b)Ta có : \(2\widehat{ABD}=\widehat{DBC}=\widehat{EBD}\)
\(\Rightarrow ED=BE=CD\left(Q.E.D\right)\)
c)Ta có : \(\widehat{A}=50^o\Rightarrow\widehat{B}=\widehat{C}=65^o\)
\(\Rightarrow\widehat{BED}=\widehat{CED}=115^o\left(Q.E.D\right)\)
\(x^3-4x+3\)
\(=x^3-x^2+x^2-x-3x+3\)
\(=x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-3\right)\)
\(x^3-4x+3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)-\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-3\right)\)
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
(x+2)(1+x-x2+x3-x4)-(1-x)(1+x+x2+x3+x4)
=x+x2-x3+x4-x5+2+2x-4x2+8x3-16x4-1-x-x2-x3-x4+x+x2+x3+x4
=-x5-15x4+9x3-3x2+3x+1
a)
\(-4x\left(-2x+1\right):-4x-\left(x+2\right)=8\)
\(-2x+1-x-2=8\)
\(-3x-1=8\)
\(-3x=9\)
\(x=-3\)
b)
\(-\frac{1}{2}x^2\left(-4x^2+6x-2\right):\left(\frac{-1}{2}x^2\right)+4\left(x^2-2x+1\right)==0\)
\(-4x^2+6x-2+4x^2-8x+4=0\)
\(-2x+2=0\)
\(-2x=-2\)
\(x=1\)
hình:
phần đề bài: ý bn là sao?