Tính giá trị biểu thức A=x3 +12x-8 với x=∛(4(√5+1) )-∛(4(√5-1) )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2-2y^2=2x+y\left(1\right)\\y^2-2x^2=2y+x\left(2\right)\end{cases}}\)
\(\left(1\right)-\left(2\right)\)
\(\Leftrightarrow3x^2-3y^2=x-y\)
\(\Leftrightarrow\left(x-y\right)\left(3x+3y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\3x+3y-1=0\end{cases}}\)
TH1: x=y => x2 - 2x2 =2x+x => -x2 - 3x=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Th2: (làm tương tự TH1)
\(P=\left[\left(2+\frac{1}{a}+\frac{1}{b}\right)+1\right]\left[\left(2+\frac{1}{b}+\frac{1}{c}\right)+1\right]\left[\left(2+\frac{1}{c}+\frac{1}{a}\right)+1\right]\)
\(\ge\left(6\sqrt[3]{\frac{1}{4ab}}+1\right)\left(6\sqrt[3]{\frac{1}{4bc}}+1\right)\left(6\sqrt[3]{\frac{1}{4ca}}+1\right)\)
\(\ge\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ab}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4bc}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ca}}\right)^6}\right]\)
\(=\left[7\sqrt[7]{\left(\frac{1}{4ab}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4bc}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4ca}\right)^2}\right]\)
\(=343\sqrt[7]{\left(\frac{1}{64\left(abc\right)^2}\right)^2}\ge343\sqrt[7]{\left(\frac{1}{64\left[\frac{\left(a+b+c\right)^3}{27}\right]^2}\right)^2}=343\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
P/s: Em chưa check lại đâu nha::D
Khúc cuối bài ban nãy là \(\ge343\) nha! Em đánh nhầm
Cách khác (em thử dùng Holder, mới học nên em không chắc lắm):
\(P\ge\left(3+\sqrt[3]{\frac{1}{abc}}+\sqrt[3]{\frac{1}{abc}}\right)^3=\left(3+2\sqrt[3]{\frac{1}{abc}}\right)^3\ge\left(3+2\sqrt[3]{\frac{1}{\left[\frac{\left(a+b+c\right)^3}{27}\right]}}\right)^3\ge343\)