Cho phương trình bậc hai: x²-( 2m+3)x +m²+2=0.
1. Tìm m để phương trình có hai nghiệm phân biệt.
2. Không giải phương trình, tìm m để phương trình có nghiệm này bằng 3 lần nghiệm kia.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Meiko - Toán lớp 5 - Học toán với OnlineMath
Em tham khảo bài làm của quản lí nhé!
Gọi số lần bắn trúng các vòng 8,9,10 lần lượt là a;b;ca;b;c.
Ta có a+b+c=11a+b+c=12
và 8a+9b+10c=100
đến đây bn mò nhá !!! ><
Gọi cạch góc vuông thứ nhất là a
và cạnh góc vuông thứ hai là b
Ta có công thức tính diện tích: \(S=\frac{1}{2}.a.b\Leftrightarrow\frac{1}{2}ab=6\Leftrightarrow ab=12\)
\(ab=12\Leftrightarrow\hept{\begin{cases}a=\frac{12}{b}\\b=\frac{12}{a}\end{cases}}\)
Áp dụng định lý py-ta-go ta có:
\(a^2+b^2=25^2\Leftrightarrow a^2+b^2=625\)
Thay \(a=\frac{12}{b}\) và \(b=\frac{12}{a}\) ta có:
\(\left(\frac{12}{b}\right)^2+\left(\frac{12}{a}\right)^2=625\)
\(\Leftrightarrow\left(\frac{12}{b}\right)^2-625=-\left(\frac{12}{a}\right)^2\)
\(\Leftrightarrow\left(\frac{12}{b}\right)^2-25^2=-\left(\frac{12}{a}\right)^2\)
\(\Leftrightarrow\left(\frac{12}{b}+25\right)\left(\frac{12}{b}-25\right)=-\left(\frac{12}{a}\right)^2\)
Mình không biết đề bài của bạn như thế nào quan trọng là điều kiện của a
và hầu hết các bài toán có thể sử dụng UCT thì mẫu lớn hơn hoặc bằng 0.
Theo phương pháp UCT thì có thể làm như thế này:
Thay a = 1 vào khi đó xảy ra dấu bằng:
\(m+n=\frac{\sqrt{3}}{2}\)=> \(n=\frac{\sqrt{3}}{2}-m\)
Thay vào bất đẳng thức:
\(\frac{\sqrt{3a}}{3-a}\ge ma+\frac{\sqrt{3}}{2}-m\)
<=> \(\sqrt{3}\left(\frac{\sqrt{a}}{3-a}-\frac{1}{2}\right)\ge m\left(a-1\right)\)
<=> \(\sqrt{3}\left(\frac{2\sqrt{a}-3+a}{2\left(3-a\right)}\right)\ge m\left(a-1\right)\)
<=> \(\sqrt{3}\left(\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-1\right)}{2\left(3-a\right)}\right)\ge m\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)
Cần điều kiện của a và đề bài lần sau em nhớ chép nguyên cái đề bài nhé!
=> \(m\le\frac{\sqrt{3}\left(\sqrt{a}+3\right)}{2\left(3-a\right)\left(\sqrt{a}+1\right)}\)
Xét tại điểm rơi a = 1
\(m=\frac{\sqrt{3}}{2}\)=> n = 0
A B C O J I N H M P
Gọi P ; M lần lượt là giao điểm của CH và BH với AB và AC
a) Ta có:^CPA = ^BMA = 90o => ^HPA = ^HMA = 90o => ^HPA + ^HMA = 180o
=> Tứ giác HPAM nội tiếp
=> ^PAM + ^PHM = 180o
=> ^BHC = ^PHM = 180o - ^PAM =180o - \(\alpha\)
b) I là tâm đường tròn ngoại tiếp \(\Delta\)HBC
=> IB = IH = IC
=> \(\Delta\)IBH và \(\Delta\)IIHC cân tại I
=> ^IBH = ^IHB và ^ICH = ^IHC
=> ^IBH + ^ICH = ^IHB + ^IHC = ^BHC = \(180^o-\alpha\)
=> ^BIC = 360o - ^IBH - ^ICH - ^BHC = \(2\alpha\)
Ta lại có ^BOC = 2.^BAC = \(2\alpha\) ( góc ở tâm và góc nội tiếp cùng chắn cung BC)
=> ^BIC = ^BOC (1)
Mặt khác: OB = OC; IB = IC
=> OI là đường trung trực của BC (2)
Từ (1) ; (2) => O; I nằm khác phía so với BC
Mà \(\Delta\)BIC cân => IO là đường phân giác ^BIC
=> OIC = \(\frac{1}{2}\).^BIC = \(\alpha\)
c) Từ (b) => ^BIO = ^CIO = ^BOI = ^COI
=> BOCI là hình bình hành có OI vuông BC
=> BOCI là hình thoi
mà B; C; O cố định => I cố định
Tương tự ta cungc chứng minh được: OCJA là hình thoi
=> CJ = CO = R mà C; O cố định
=> J nằm trên đường tròn tâm C bán kính R cố định
d) AJCO là hình thoi => AJ // = OC
OCIB là hình thoi => OC // = BI
=> AJ //=BI
=> AJIB là hình bình hành có hai đường chéo AI; BJ cắt nhau tại N
=> N là trung điểm của AI