Cho điểm P nằm trong đường tròn tâm O. Vẽ các đường kính AB và CD đi qua P vuông góc với nhau. Xác định vị trí của AB và CD sao cho AB+CD đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta chứng minh bổ đề sau đây: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{9\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\). Đặt P = VT - VP.
(đây là phân tích của một người khác, không phải của em)
Do đó \(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{9\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}=\frac{27}{\sqrt{\left(x+y+z\right)^2.\left(x+y+z\right)^2}}\)
\(\ge\frac{27}{\sqrt{3\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}}=\frac{9}{x+y+z}\)
Đẳng thức xảy ra khi x = y = z = 1
P/s: Em không chắc lắm!
Theo giả thiết: \(x^2+y^2+z^2=3\Rightarrow2\left(xy+yz+zx\right)=\left(x+y+z\right)^2-3\)
Theo BĐT Bunyakovsky dạng phân thức, ta có:
\(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x^2}{xy}+\frac{y^2}{yz}+\frac{z^2}{zx}\)\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\)
Đến đây, ta cần chỉ ra rằng \(\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\ge\frac{9}{x+y+z}\)(*)
Ta có: \(xy+yz+zx>0\Leftrightarrow\left(x+y+z\right)^2\ge x^2+y^2+z^2=3\)
\(\Rightarrow x+y+z>\sqrt{3}\)
Đặt \(x+y+z=t>\sqrt{3}\). Khi đó (*) trở thành \(\frac{2t^2}{t^2-3}\ge\frac{9}{t}\Leftrightarrow\frac{\left(t-3\right)^2\left(2t+3\right)}{t\left(t^2-3\right)}\ge0\)(đúng với mọi \(t>\sqrt{3}\))
Đẳng thức xảy ra khi \(t=3\)hay x = y = z = 1