K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR 

\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào 

câu  2 câu 3 nè 

2) a) (ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)(ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)

b) Chuyển vế rồi khai triển, search trên mạng cũng có

3) Áp dụng BĐT Bunyakovsky, ta có:

x2+y2≥(x+y)22=222=2

4 tháng 3 2020

giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = b7² 
=> a² ⋮ 7 
7 nguyên tố 
=> a ⋮ 7 

30 tháng 4 2020

\(\hept{\begin{cases}\left(m+2\right)x+2y=5\\mx-y=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m+2\right)x+2y=5\left(1\right)\\2mx-2y=2\left(2\right)\end{cases}}}\)

Lấy (1) +(2) có:

\(\left(m+2\right)x+2mx=7\)

\(\Leftrightarrow\left(m+2+2m\right)x=7\)

\(\Leftrightarrow\left(3m+2\right)x=7\)

\(\Leftrightarrow x=\frac{7}{3m+2}\)

Để hệ có nghiệm nguyên duy nhất thì 3m+2 \(\ne\)0 <=> m\(\ne\frac{-2}{3}\)

\(m\inℤ\Rightarrow3m+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

ta có bảng

3m+2-7-117
m\(\frac{-1}{3}\)-1\(\frac{5}{3}\)-3

Vì m\(\in\)Z => m=-1; m=-3

Bài 1 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường cao BE và CF cắt nhau tại H . Đường thẳng BE và CF cắt (O) lần lượt tại M và N . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IN cắt AB tại P và IM cắt AC tại Q . Chứng minh : 3 điểm P,H,Q thẳng hàngBài 2 : Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) có 2 đường trung tuyến BM và CN cắt nhau tại G .Đường thẳng BM và CN cắt (O)...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường cao BE và CF cắt nhau tại H . Đường thẳng BE và CF cắt (O) lần lượt tại M và N . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IN cắt AB tại P và IM cắt AC tại Q . Chứng minh : 3 điểm P,H,Q thẳng hàng

Bài 2 : Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) có 2 đường trung tuyến BM và CN cắt nhau tại G .Đường thẳng BM và CN cắt (O) lần lươt tại D và E . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IE cắt AB tại P và ID cắt AC tại Q . Chứng minh : 3 điểm P,G,Q thẳng hàng

Bài 3 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường phân giác BM và CN của tam giác ABC cắt nhau tại  K . Đường thẳng BM và CN cắt (O) tại E và F . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IF cắt AB tại P và IE cắt AC tại Q .Chứng minh : 3 điểm P,K,Q thẳng hàng

Lưu ý : bài toán số 2 và 3 được khai thác và mở rộng từ bài toán số 1 , một điều thú vị nữa là các bài toán 1,2,3 có nội dung tương đối giống nhau

Nguon : Near Ryuzaki - VMF

Lam ho mik bai 2+3  nha 

1
2 tháng 3 2020

Cả 3 bài này đều sử dụng định lí Pascal

B1: Với các điểm: NAMCIB cùng thuộc đường tròn (O)

NC cắt BM tại H; NI cắt AB  tại P ; MI cắt AC tại Q 

=> P; H ; Q thẳng hàng

B2: Xét các điểm ADCIBE  cùng thuộc đường tròn (O)

B3: Tương tự.

2 tháng 3 2020

Gọi số công nhân nam và nữ lần lượt là a và b. Theo đề bài, ta có:

a+b=45(1)

\(\frac{32a+26b}{45}=30\Leftrightarrow32a+26b=1350\)(2)

Biến đổi phương trình (2)

32a+26b=1350

26(a+b)+6a=1350

26x45+6a=1350

1170+6a=1350

6a=180

a=30

=>b=45-a=45-30=15

Vậy....

\(x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-x^2+x+2}\)

\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-\left(x-2\right)\left(x+1\right)}\)

\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)

\(\Rightarrow\frac{x^3+x^2+x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)

\(\Rightarrow x^3+x^2+x=\left(3-x\right)\left(x+1\right)\sqrt{x+1}\sqrt{2-x}\)