Cho $\triangle ABC$ có trọng tâm $G$. Vẽ đường thẳng $d$ qua $G$ và song song với $AB$, $d$ cắt $BC$ tại điểm $M$. Chứng minh rằng $B M=\dfrac{1}{3} B C$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D F E
Ta có DE//AC \(\Rightarrow\dfrac{AE}{AB}=\dfrac{CD}{BC}\) (Talet)
Ta có DF//AB \(\Rightarrow\dfrac{AF}{AC}=\dfrac{BD}{BC}\) (Talet)
\(\Rightarrow\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{CD}{BC}+\dfrac{BD}{BC}=\dfrac{BC}{BC}=1\left(dpcm\right)\)
a)
\(\dfrac{x^3-8}{5x+10}.\dfrac{x^2+4x}{x^2+2x+4}=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+2\right)}.\dfrac{x\left(x+4\right)}{x^2+2x+4}\\ =\dfrac{\left(x-2\right).\left(x^2+4x\right)}{5x+10}\\ =\dfrac{x^3+4x^2-2x^2-8x}{5x+10}\\ =\dfrac{x^3+2x^2-8x}{5x+10}\)
b)
\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2x+10}.-\dfrac{3}{x-6}\\ =\dfrac{-3\left(x+6\right)}{2x+10}\\ =\dfrac{-3x-18}{2x+10}\)
Lời giải:
a.
\(P=\left[\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}-2)}-\frac{3}{\sqrt{x}(\sqrt{x}-2)}\right]:\frac{\sqrt{x}-3}{(\sqrt{x}-2)^2}\\ =\frac{\sqrt{x}-3}{\sqrt{x}(\sqrt{x}-2)}.\frac{(\sqrt{x}-2)^2}{\sqrt{x}-3}\\ =\frac{\sqrt{x}-2}{\sqrt{x}}\)
b.
\(P=\frac{\sqrt{x}-2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}< 1\)
giải bài toán: cho tam giác MNP, NTlà phân giác của góc N biết MN=4cm, NT=10cm, MP=8cm:TínhTM, TP?
Ta có \(\dfrac{1}{a^3\left(b+c\right)}=\dfrac{1}{\dfrac{1}{b^3c^3}\left(b+c\right)}=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}\)
Tương tự \(\Rightarrow VT=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{c^2a^2}{\dfrac{1}{c}+\dfrac{1}{a}}+\dfrac{a^2b^2}{\dfrac{1}{a}+\dfrac{1}{b}}\)
\(\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)}\) (BĐT B.C.S)
\(=\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{ab+bc+ca}{abc}\right)}\)
\(=\dfrac{ab+bc+ca}{2}\) (do \(abc=1\))
\(\ge\dfrac{3\sqrt[3]{abbcca}}{2}\)
\(=\dfrac{3\left(\sqrt[3]{abc}\right)^2}{2}=\dfrac{3}{2}\) (do \(abc=1\))
ĐTXR \(\Leftrightarrow a=b=c=1\)
Khi đó, ADAD là đường trung tuyến của tam giác ABCABC.
Vì GG là trọng tâm của tam giác ABCABC nên điểm GG nằm trên cạnh ADAD.
Ta có AGAD=23ADAG=32 hay AG=23ADAG=32AD.
Vì MGMG // ABAB, theo định lí Thalès, ta suy ra: AGAD=BMBD=23ADAG=BDBM=32.
Ta có BD=CDBD=CD (vì DD là trung điểm của cạnh BCBC) nên BMBC=BM2BD=22.3=13BCBM=2BDBM=2.32=31.
Do đó BM=13BCBM=31BC (đpcm).