K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

Ta có \(4xy^2-3x-3y^2=1\Leftrightarrow y^2\left(4x-3\right)=3x+1\Leftrightarrow y^2=\frac{3x+1}{4x-3}\inℤ\left(do4x-3\ne0\right)\)

\(\Rightarrow3x+1⋮4x-3\Rightarrow4\left(3x+1\right)⋮4x-3\Leftrightarrow3\left(4x-3\right)+13⋮4x-3\Leftrightarrow13⋮4x-3\)

\(\Rightarrow4x-3\inƯ\left(13\right)=\left\{\pm1,\pm13\right\}\Leftrightarrow4x\in\left\{-10,2,4,16\right\}\Rightarrow x\in\left\{1,4\right\}\)(do x thuộc Z)

Với \(x=1\Rightarrow y^2=4\Rightarrow y=\pm2\left(tm\right)\)

Với \(x=4\Rightarrow y^2=1\Rightarrow y=\pm1\left(tm\right)\)

4xy²−3x−3y²=14xy²−3x−3y²=1

⇔ y²(4x−3)−0,75(4x−3)=3,25y²(4x−3)−0,75(4x−3)=3,25

⇔ (4x−3)(y²−0,75)=3,25(4x−3)(y²−0,75)=3,25

⇔ (4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)(4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)

Ta có bảng giá trị

4x-3     |     1     |     13     |     -1     |     -13     |

x          |      1    |      4      |      /      |       /       |

4y²-3    |    13    |      1      |    -13    |       -1     |

y          |    ±2    |      ±1    |      /      |       /       |

Vậy ...

7 tháng 3 2020

2) Em nhầm đề ca/b+1

Ta có:

VT = \(\frac{ab}{c+a+b+c}+\frac{bc}{a+a+b+c}+\frac{ac}{b+a+b+c}\)

=\(\frac{ab}{\left(a+c\right)+\left(b+c\right)}+\frac{bc}{\left(a+b\right)+\left(a+c\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}\)

 =\(\frac{ab}{4}.\frac{4}{\left(a+c\right)+\left(b+c\right)}+\frac{bc}{4}.\frac{4}{\left(a+b\right)+\left(a+c\right)}+\frac{ac}{4}.\frac{4}{\left(a+b\right)+\left(b+c\right)}\)

\(\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)+\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{ac}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

=\(\frac{1}{4}\left[\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)\right]\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

Dấu "=" xảy ra <=>  a= b = c =1/3

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu 5. Cho a + b =...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

Câu 16. Tìm giá trị lớn nhất của biểu thức:

Câu 17. So sánh các số thực sau (không dùng máy tính):

1
7 tháng 3 2020

Câu 1: giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = b7² 
=> a² ⋮ 7 
7 nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

8 tháng 3 2020

\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

Tương tự  vậy chúng ta có:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\)

\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)

Cộng vế theo vế chúng ta có:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a+b+c}{2}\)

7 tháng 3 2020

Ồ sorry bạn nhiều, chỗ đấy bị lỗi kĩ thuật rồi, mình sửa lại nhé :

\(M\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

Lại có : \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt{a^3b^3c^3}}{2}=\frac{3}{2}\)

Do đó : \(M\ge\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

7 tháng 3 2020

Ta có : \(\frac{1}{a^3\left(b+c\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}=\frac{\left(\frac{1}{a}\right)^2}{a\left(b+c\right)}\)

Tương tự : \(\frac{1}{b^3\left(a+c\right)}=\frac{\left(\frac{1}{b}\right)^2}{b\left(a+c\right)}\) , \(\frac{1}{c^3\left(a+b\right)}=\frac{\left(\frac{1}{c}\right)^2}{c\left(a+b\right)}\)

Ta thấy : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Áp dụng BĐT Svacxo ta có :

\(M=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^2\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)   \(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vâỵ \(M_{min}=\frac{3}{2}\) tại \(a=b=c=1\)

Không mất tính tổng quát giả sử x ≥ y

⇒x²<x²+8y≤x²+8x<(x+4)²

VÌ x²+8yx²+8y là số chính phương ⇒x²+8y=(x+1)2x²+8y=(x+1)2

hoặc x²+8y=(x+2)2x²+8y=(x+2)² 

hoặc x²+8y=(x+3)²

Nếu x²+8y=(x+1)²

⇒8y=2x+1 (vô lí vì 1 bên lẻ 1 bên chẵn)

Nếu x²+8y=(x+2)²  ⇒8y=4x+4  ⇒2y=x+1

⇒[(x+1)2]²+8x  ⇒(x+12)²+8x là số chính phương.

⇒x²+34x+1=a² với a∈N

⇒(x+17)²−288=a²

        ⇒(x+17−a)(x+17+a)=288

Đến đây thì dễ rồi

Nếu x²+8y=(x+3)2 ⇒8y=6x+9x²+8y=(x+3)² 

⇒8y=6x+9 (Vô lí vì VT chẵn còn VP thì không)

Giả sử x ≤ y

Ta có: y2 ≤ y2 + 8x ≤ y2 + 8y ≤ y2 + 8y + 16 = (y + 4)2

=> y2 + 8x = (y+1)²

                      (y+2)²

                       (y+3)²

Xét TH1 : y2 + 8x = (y + 1)2

=> y2 + 8x = y2 + 2y +1

=> 8x - 2y = 1

=> 4x - y = 1212 => Loại vì x, y ∈ N*

Xét TH2: y2 + 8x = (y + 2)2

=> y2 + 8x = y2 + 4x + 4

=> 8x - 4y = 4

=> 2x - y = 1 mà x;y ∈ N* nên ta có các trường hợp sau:

Nếu x = 1 => y = 1 => x2 + 8y = 9 (TM) ; y2 + 8x = 9 (TM)

Nếu x = 2 => y = 3 => x2 + 8y = 28 (Loại)

Nếu x ≥ 3 => 2x ≥ 6 => y ≤ 5 => Loại vì x≤ y

Xét TH3 : y2 + 8x = ( y +3 )2

=> y2 + 8x = y2 + 6y + 9

=> 8x - 6y = 9

=> 4x - 3y = 4,5 => Loại vì x,y ∈ N*

Vậy (x,y) = (1;1)

cái dới không correct