Cho Tam giác ABC cân tại A, trên cạnh BC lấy M di động. Qua M kẻ MI // AC, kẻ
MK // AB. Gọi E, F là điểm đối xứng của M qua K, I:
a) CMR: AIMK là hình bình hành.
b) CMR: E và F đối xứng nhau qua A.
c) BCEF là hình gì? Vì sao?.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b, c > 0
=> a/b > 0 ; b/c > 0 ; c/a > 0
Áp dụng bđt Cauchy cho :
\(\frac{a}{b}+1\ge2\sqrt{\frac{a}{b}\cdot1}=2\sqrt{\frac{a}{b}}\)(1)
\(\frac{b}{c}+1\ge2\sqrt{\frac{b}{c}\cdot1}=2\sqrt{\frac{b}{c}}\)(2)
\(\frac{c}{a}+1\ge2\sqrt{\frac{c}{a}\cdot1}=2\sqrt{\frac{c}{a}}\)(3)
Nhân (1), (2) và (3) theo vế
=> \(\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{a}+1\right)\ge2\sqrt{\frac{a}{b}}\cdot2\sqrt{\frac{b}{c}}\cdot2\sqrt{\frac{c}{a}}=8\sqrt{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=8\sqrt{\frac{abc}{abc}}=1\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c