Cho tam giác ABC nội tiếp đường tròn (O), AH là đường cao. Gọi D là giao điểm của đường thẳng AO với BC.
CMR: \(\frac{HB}{HC}+\frac{DB}{DC}\ge\frac{2sinC}{sinB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải hơi dài không biết có đúng không. Bạn tự vẽ hình nha!
Gọi F là trung điểm của AD. I là trung điểm của AC. Ta qui về chứng minh B,F,E thẳng hàng
Trước hết ta chứng minh bài toàn phụ: Từ S ngoài (O) kẻ 2 tiếp tuyến SC,SB và cát tuyến SDA, gọi M là giao của SO với BC thì BC là phân giác của góc AMD (bạn tự chứng mình nha).
Áp dụng vào bài toán ta có: AOMD nội tiếp \(\Rightarrow\widehat{AOD}=\widehat{AMD}\Leftrightarrow\frac{1}{2}\widehat{AOD}=\frac{1}{2}\widehat{AMD}\Leftrightarrow\widehat{ACD}=\widehat{AMB}\)
mà \(\widehat{ACD}+\widehat{ABD}=180^o,\widehat{AMB}+\widehat{AMC}=180^o\Rightarrow\widehat{ABD}=\widehat{AMC}\)
Xét (O) ta có: \(\widehat{ADB}=\widehat{ACB}\)
Suy ra \(\Delta ABD\)đồng dạng với \(\Delta AMC\)(g,g) mà F là trung điểm AD, I là trung điểm AC suy ra tam giác ABF đồng dạng với tam giác AMI (c.g.c) suy ra \(\widehat{ABF}=\widehat{AMI}\)
Dễ thấy: \(\widehat{OMI}+\widehat{OIC}=90^o+90^o=180^o\)suy ra OMCI nội tiếp suy ra \(\widehat{MIC}=\widehat{MOC}=\frac{1}{2}\widehat{BOC}=\widehat{BAC}\Rightarrow\widehat{AIM}=\widehat{BDC}\)
Kết hợp với \(\widehat{BCD}=\widehat{BAD}=\widehat{MAC}\)(do tam giác ABD đồng dạng với tam giác AMC) suy ra tam giác AIM đồng dạng với tam giác CDB(g.g) suy ra \(\widehat{ABF}=\widehat{AMI}=\widehat{CBD}=\widehat{CAD}=\widehat{ACE}\left(AD//CE\right)=\widehat{ABE}\)suy ra B,F,E thẳng hàng hay BE đi qua trung điểm AD (đpcm)
\(x^2-\left(2m-3\right)x+m\left(m-3\right)=0\)
=> \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Δ \(=\left(2m-3\right)^2-4\left(m^2-3m\right)\)
\(=4m^2-12m+9-4m^2+12m=9\)
căn Δ =\(\pm\sqrt{9}=\pm3\)
ta có 2 nghiệm x1, x2
=>\(\orbr{\begin{cases}x1=\frac{2m-3-3}{2}\\x2=\frac{2m-3+3}{2}\end{cases}}\)
=>\(2x1-2x2=4\)
=>\(2m-6-\frac{2m}{2}=4\)
=>\(2m-6-m=4=>m=10\)
\(\Delta=\left(-\left(2m-3\right)\right)^2-4m\left(m-3\right)\)
= 4m2 - 12m + 9 - 4m2 + 12m
= 9
Suy ra pt trên có 2 no phân biệt
Theo vi-et: \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1.x_2=m\left(m-3\right)\end{cases}}\)
Ta có: x1 + x2 = 2m - 3 hay x1 + 2x1 - 4 = 2m - 3
<=> 3x1 = 2m + 1 <=> x1 = \(\frac{2m+1}{3}\)=> x2 = \(\frac{4m-10}{3}\)
Ta lại có: x1.x2 = m(m - 3)
Hay \(\frac{2m+1}{3}.\frac{4m-10}{3}=m\left(m-3\right)\)
<=> (2m + 1)(4m - 10) = 9(m2 - 3m)
<=> 8m2 - 20m + 4m - 10 - 9m2 + 27m = 0
<=> m2 - 11m + 10 = 0
<=> (m - 10)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=10\\m=1\end{cases}}\left(TM\right)\)
Vậy m = 10 hoặc m = 1 thì thỏa mãn đề bài
aizzzz bài này giải rồi mà taaa
Lướt xuống là thấy
Học tốt!!!!!
Gọi hai kích thước của hình chữ nhật đó là a và b (ĐK: a > b > 0)
\(\Delta=\left(-2m\right)^2-4\left(2m-1\right)\)
= 4m2 - 8m + 4 = (2m - 2)2 > 0
Để pt có 2 no phân bt thì 2m - 2 khác 0 <=> m khác 1
Theo vi-et:\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-1\end{cases}}\)
Theo đề: a.b = 7 <=> 2m - 1 = 7
<=> m = 4
Vậy m = 4 là gtri cần tìm
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}\) = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}\)
= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\) = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)
Bạn tự vẽ hình nha
Kẻ đường kính AM của (O) \(\Rightarrow D\in BC\)
\(\widehat{ACM}=90^o;\widehat{ABM}=90^o\)(góc nội tiếp chắn nửa đường tròn)
Ta có: \(\Delta ABH~\Delta AMC\left(g.g\right)\Rightarrow\frac{HB}{CM}=\frac{AB}{AM}\Rightarrow HB.AM=AB.CM\)
\(\Delta HCA~\Delta BMA\left(g.g\right)\Rightarrow\frac{HC}{BM}=\frac{AC}{AM}\Rightarrow HC.AM=AC.BM\)
Chia vế theo vế, ta được: \(\frac{HB}{HC}=\frac{AB.MC}{AC.MB}\left(1\right)\)
Lại có: \(\Delta ADB~\Delta CDM\left(g.g\right)\Rightarrow\frac{DB}{DM}=\frac{AB}{CM}\Rightarrow DB.CM=DM.AB\)
\(\Delta DAC~\Delta DBM\left(g.g\right)\Rightarrow\frac{DC}{DM}=\frac{AC}{BM}\Rightarrow DC.BM=AC.DM\)
Chia vế theo vế, ta được: \(\frac{DB}{DC}=\frac{AB.MB}{AC.MC}\left(2\right)\)
Cộng vế theo vế (1), (2) ta được: \(\frac{HB}{HC}+\frac{DB}{DC}=\frac{AB}{AC}\left(\frac{MC}{MB}+\frac{MB}{MC}\right)\ge\frac{AB}{AC}.2\sqrt{\frac{MC}{MB}.\frac{MB}{MC}}=\frac{2.AB}{AC}\)
Mà \(\frac{AB}{AC}=\frac{sinC}{sinB}\Rightarrow\frac{HB}{HC}+\frac{MB}{MC}\ge\frac{2.sinC}{sinB}\)
Dấu "=" xảy ra khi \(MB=MC\Leftrightarrow AB=AC\Leftrightarrow\Delta ABC\)cân tại A