K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)=  \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

12 tháng 3 2020

Ta có : 

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}\)

\(=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

bài này e chịu , nhưng sau những lần tìm kiếm thì đây ạ 

\(4x^2=3x+4\)

\(4x^2-3x-4=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{73}}{8}\\x=\frac{3-\sqrt{73}}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=1,443\\x=-0,693\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{73}}{8}\\x=\frac{3-\sqrt{73}}{8}\end{cases}}\)

Chỉ cần tính đến đó thôi e .... ạ :P

Học tốt!!!!!!!!

12 tháng 3 2020

ĐK: \(\hept{\begin{cases}x\ge1\\x^2-20x+24\le0\end{cases}}\)

\(x^2-20x+24+8\sqrt{3\left(x-1\right)}=0\)

\(\Leftrightarrow2\left(x^2-20x+24+8\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow2x^2-32x+32+8\left(2\sqrt{3x-3}-x+2\right)=0\)

\(\Leftrightarrow2x^2-32x+32+8\left[2\sqrt{3x-3}-\left(x-2\right)\right]=0\)

\(\Leftrightarrow2x^2-32x+32+8\frac{4\left(3x-3\right)-\left(x-2\right)^2}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow2x^2-32x+32+8\frac{12x-12-x^2+4x-4}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow2\left(x^2-16x+16\right)-8\frac{x^2-16x+16}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow\left(x^2-16x+16\right)\left(2-\frac{8}{2\sqrt{3x-3}+x-2}\right)=0\)

Xét \(2-\frac{8}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow2\sqrt{3x-3}+x-6=0\)

\(\Leftrightarrow\left(2\sqrt{3x-3}\right)^2=\left(6-x\right)^2\)

\(\Leftrightarrow12x-12=x^2-12x+36\)

\(\Leftrightarrow0=x^2-24x+48\)

Tự làm tiếp nhé ~

2 tháng 12 2020

a, \(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)

\(\Leftrightarrow2\left(x^2-4x+3x-12\right)=2x^2+4x-x-2-27\)

\(\Leftrightarrow2x^2-2x-24=2x^2+3x-29\Leftrightarrow-5x+5=0\Leftrightarrow x=1\)

b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)

\(\Leftrightarrow x^3-8-x\left(x^2-9\right)=26\Leftrightarrow-8+9x=26\)

\(\Leftrightarrow9x=18\Leftrightarrow x=2\)

<=> \(\hept{\begin{cases}7x-3y=5\\3x+2y=12\end{cases}}\) <=> \(\hept{\begin{cases}21x-9y=15\\21x+14y=84\end{cases}}\) <=> \(\hept{\begin{cases}-23y=-69\\3x+2y=12\end{cases}}\) <=> \(\hept{\begin{cases}y=3\\x=\frac{12-2y}{3}=\frac{12-2.3}{3}=2\end{cases}}\)

Vậy nghiệm của hpt là: (2;3)

11 tháng 3 2020

a ) Thay m =0 vào phương trình ta được: \(x^2-2x=0\Rightarrow x\left(x-2\right)=0\)0

                                                            \(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

                                                                  

12 tháng 3 2020

Phương trình \(x^2-2x-2m^2=0\)có các hệ số a = 1; b = -2; c = -2m2

\(\Rightarrow\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2m^2\right)=4+8m^2\)(luôn dương)

Giả sử phương trình có 2 nghiệm x1; x2 thì \(\hept{\begin{cases}x_1=\frac{2+\sqrt{4+8m^2}}{2}=1+\sqrt{1+2m^2}\\x_2=\frac{2-\sqrt{4+8m^2}}{2}=1-\sqrt{1+2m^2}\end{cases}}\)

Thay vào dữ kiện \(x_1^2=4x_2^2\), ta được:

\(\left(1+\sqrt{1+2m^2}\right)^2=4\left(1-\sqrt{1+2m^2}\right)^2\)

\(\Leftrightarrow1+1+2m^2+2\sqrt{1+2m^2}=4-8\sqrt{1+2m^2}+4+8m^2\)

\(\Leftrightarrow10\sqrt{1+2m^2}=6m^2+6\)

Bình phương hai vế:

\(100\left(1+2m^2\right)=36m^4+72m^2+36\)

\(\Leftrightarrow36m^4-128m^2-64=0\)

Đặt \(m^2=t\left(t\ge0\right)\)

Phương trình trở thành \(36t^2-128t-64=0\)

\(\Delta=128^2+4.36.64=25600,\sqrt{\Delta}=160\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{128+160}{72}=4\\t=\frac{128-160}{72}=\frac{-4}{9}\left(L\right)\end{cases}}\)

Vậy t = 4\(\Rightarrow m=\pm2\)

Vậy khi m =-2 hoặc 2 thì  phương trình có 2 nghiệm \(x_1;x_2\)khác 0 và thỏa mãn điều kiện \(x_1^2=4x_2^2\)