Giải phương trình: \(\sqrt{-x^2+4x+3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi tuyển sinh vào 10 ptnk Hồ Chí Minh 2000-2001
https://text.123doc.org/document/1812116-de-thi-vao-chuyen-toan-10.htm
Bạn vào đây nhé :D
Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\frac{m}{1}\ne\frac{1}{2}\Rightarrow2m\ne1\Rightarrow m\ne\frac{1}{2}\)
* Giải hệ theo m :
\(\hept{\begin{cases}mx+y=4\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}2mx+2y=8\\x+2y=5\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2mx+x=3\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x\left(2m+1\right)=3\\x+2y=5\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\\frac{3}{2m+1}+2y=5\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=5-\frac{3}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=\frac{10m-2}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\y=\frac{5m-1}{2m+1}\end{cases}}\)
Vì \(x>0\Rightarrow\frac{3}{2m+1}>0\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\left(1\right)\)
Vì \(y>0\Rightarrow\frac{5m-1}{2m+1}>0\)mà \(2m+1>0\Rightarrow5m-1>0\Rightarrow m>\frac{1}{5}\left(2\right)\)
Để \(y>x\Rightarrow\frac{5m-1}{2m+1}>\frac{3}{2m+1}\)\(\Rightarrow\frac{5m-1}{2m+1}-\frac{3}{2m+1}>0\)
\(\Rightarrow\frac{5m-1-3}{2m+1}>0\Rightarrow\frac{5m-4}{2m+1}>0\)
Mà \(2m+1>0\Rightarrow5m-4>0\Rightarrow m>\frac{4}{5}\)
Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\)Để hệ phương trình có nghiệm duy nhất thỏa mãn y > x > 0 thì \(m>\frac{4}{5}\)
Giải xong muốn gãy tay :v
https://diendantoanhoc.net/index.php?app=core&module=attach§ion=attach&attach_id=20602
Vào link này xem nhé
Học tốt!!!!!!!
đẶT \(A=\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
\(=\sqrt{\frac{\left(3\sqrt{3}-4\right)\left(2\sqrt{3}-1\right)}{11}}-\sqrt{\frac{\left(\sqrt{3}+4\right)\left(5+2\sqrt{3}\right)}{13}}\)
\(=\sqrt{\frac{18-3\sqrt{3}-8\sqrt{3}+4}{11}}-\sqrt{\frac{5\sqrt{3}+6+20+8\sqrt{3}}{13}}\)
\(=\sqrt{\frac{11\left(2-\sqrt{3}\right)}{11}}-\sqrt{\frac{13\left(2+\sqrt{3}\right)}{13}}\)
\(=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
ta có: \(2-\sqrt{3}< 2+\sqrt{3}\Rightarrow\sqrt{2-\sqrt{3}}< \sqrt{2+\sqrt{3}}\)
\(\Rightarrow A< 0\Rightarrow-A>0\)
\(\Rightarrow-A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(A^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2\)
\(A^2=\left(\sqrt{2+\sqrt{3}}\right)^2-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\left(\sqrt{2-\sqrt{3}}\right)^2\)
\(A^2=\left|2+\sqrt{3}\right|-2\sqrt{4-3}+\left|2-\sqrt{3}\right|\)
\(A^2=2+\sqrt{3}-2+2-\sqrt{3}\)
\(A^2=2\)
\(A=\pm\sqrt{2}\)
mà -A > 0 nên A = \(-\sqrt{2}\)
~~ Học tốt ~~
Ở dòng:
\(A=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\) còn có thêm cách phân tích
\(\sqrt{2}.A=\sqrt{4-2.\sqrt{3}}-\sqrt{4+2.\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1-\sqrt{3}-1=-2\)
=> \(A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
Điều kiện 1 =<x=<3
\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)
\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)
\(\Leftrightarrow x\left(x-2\right)^2+\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}>0\right)\)
<=> x=2(tmđk)