cho đường tròn tâm O đường kính AB. Qua trung điểm E của OB, kẻ một dường thẳng vuông góc OB, cắt đường tròn O ở M và N. Kẻ dây MP song song AB. Gọi I là điểm chính giữa của cung nhỏ PM. K là giao điểm của OI và PM. CM: KE song song PN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bddt Bunhiacopski dạng phân thức:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\frac{9}{4}\)
\(\Rightarrow-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le\frac{-9}{4}\)
\(\Rightarrow3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le\frac{3}{4}\)
Dấu "=" khi x = y = z = \(\frac{1}{3}\)
5 tập vở sẽ tăng số tiền là:
800*5=4000 (đ)
3 chiếc bút sẽ giảm số tiền là:
1000*3=3000(đ)
vì số tiền giảm bé hơn số tiền tăng nên bạn Tám sẽ thiếu tiền và sẽ thiếu 1000đ
\(x\left(x^2+x+1\right)=4^y-1\)
\(\Leftrightarrow x^3+x^2+x+1=4^y\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=4^y\)( 1 )
Do x,y \(\in\)Z . Từ ( 1 )\(\Rightarrow x,y\ge0\)
Nếu x = 0 \(\Rightarrow\)y = 0 ( thỏa mãn )
Nếu x > 0 \(\Rightarrow\)y > 0 \(\Rightarrow\)x + 1 chẵn
Đặt x = 2k + 1 ( k \(\in\)N )
( 1 ) trở thành : \(\left(2k+2\right)\left(4k^2+4k+2\right)=4^y\)
\(\Leftrightarrow\left(k+1\right)\left(2k^2+2k+1\right)=4^{y-1}\)
Vì \(2k^2+2k+1\)là số lẻ mà ước lẻ của \(4^{y-1}\)chỉ có 1
\(\Rightarrow2k^2+2k+1=1\Rightarrow k=0\)
\(\Rightarrow x=1\Rightarrow y=1\)( t/m )
Vậy PT đã cho có nghiệm ( x ;y ) là ( 1 ; 1 ) ; (0 ; 0 )
\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
\(\Leftrightarrow x+1-1+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{1-x}=b\end{cases}}\)
=> phương trình \(\Leftrightarrow a^2-1+3+ab=3a+b\)
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)+3\left(1-a\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1-3+b\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2+b\right)=0\)
Tự làm tiếp nhé~