Hình bình hành ABCD có \(\widehat{A}\)=\(60^o\).Lấy E,F theo thứ tự thuộc các cạnh AD,CD sao cho DE=CF.Gọi K là điểm đối xứng với F qua BC.Chứng minh rằng EK song song với AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(4x^2-7x-2=4x^2-8x+x-2=\left(4x^2-8x\right)+\left(x-2\right)\)
\(=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)
2) \(4x^2+5x-6=4x^2+8x-3x-6=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(4x-3\right)\)
3) \(5x^2-18x-8=5x^2-20x+2x-8=\left(5x^2-20x\right)+\left(2x-8\right)\)
\(=5x\left(x-4\right)+2\left(x-4\right)=\left(x-4\right)\left(5x+2\right)\)
4) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
\(=xy\left(x+y\right)-y^2z-yz^2+x^2z-xz^2\)
\(=xy\left(x+y\right)+\left(x^2z-y^2z\right)-\left(yz^2+xz^2\right)\)
\(=xy\left(x+y\right)+z\left(x^2-y^2\right)-z^2.\left(x+y\right)\)
\(=xy\left(x+y\right)+z\left(x-y\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=xy\left(x+y\right)+\left(zx-zy\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+xz-yz-z^2\right)=\left(x+y\right).\left[x\left(y+z\right)-z\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x-z\right)\)
1) 4x2 - 7x - 2 = 4x2 - 8x + x - 2 = 4x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 4x + 1 )
2) 4x2 + 5x - 6 = 4x2 - 8x + 3x - 6 = 4x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 4x + 3 )
3) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )
4) xy( x + y ) - yz( y + z ) + xz( x - z )
= x2y + xy2 - y2z - yz2 + xz( x - z )
= ( x2y - yz2 ) + ( xy2 - y2z ) + xz( x - z )
= y( x2 - z2 ) + y2( x - z ) + xz( x - z )
= y( x - z )( x + z ) + y2( x - z ) + xz( x - z )
= ( x - z )[ y( x + z ) + y2 + xz ]
= ( x - z )( xy + yz + y2 + xz )
= ( x - z )[ ( xy + y2 ) + ( xz + yz ) ]
= ( x - z )[ y( x + y ) + z( x + y ) ]
= ( x - z )( x + y )( y + z )
5) xy( x + y ) + yz + xz( x + z ) + 2xyz ( đề có thiếu không vậy .-. )
\(=x^3+x^2-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(x^4+x^3+x^2-1=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)=\left(x+1\right)\left(x^3+x-1\right)\)
\(c,=\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
\(d,=x^2y^2-y^2-x^2+1=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)
\(e,4x^2+4x-15=\left(4x^2+4x+1\right)-16=\left(2x+1\right)^2-4^2=\left(2x+5\right)\left(2x-3\right)\)
\(3x^2-7x+2=\left(3x^2-6x\right)-\left(x-2\right)=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)
\(4x^2-5x+1=\left(4x^2-4x\right)-\left(x-1\right)=4x\left(x-1\right)-\left(x-1\right)=\left(4x-1\right)\left(x-1\right)\)
Phân tích à :v
a) x3 + x2 - 4x - 4 = x2( x + 1 ) - 4( x + 1 ) = ( x + 1 )( x2 - 4 ) = ( x + 1 )( x - 2 )( x + 2 )
b) x4 + x3 + x2 - 1 = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
c) x2 + 2xy + y2 - 2x - 2y + 1 = ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 = ( x + y )2 - 2( x + y ) + 12 = ( x + y - 1 )2
d) x2y2 + 1 - x2 - y2 = ( x2y2 - x2 ) - ( y2 - 1 ) = x2( y2 - 1 ) - ( y2 - 1 ) = ( y2 - 1 )( x2 - 1 ) = ( y - 1 )( y + 1 )( x - 1 )( x + 1 )
e) 4x2 + 4x - 15 = ( 4x2 + 4x + 1 ) - 16 = ( 2x + 1 )2 - 42 = ( 2x + 1 - 4 )( 2x + 1 + 4 ) = ( 2x - 3 )( 2x + 5 )
g) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )
h) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )
Chứng minh
a) \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)
b) \(19\equiv-1\left(mod20\right)\)
\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)
\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)
a) x3 - 6x2 + 11x - 6
= ( x3 - 2x2 ) - ( 4x2 - 8x ) + ( 3x - 6 )
= x2( x - 2 ) - 4x( x - 2 ) + 3( x - 2 )
= ( x - 2 )( x2 - 4x + 3 )
= ( x - 2 )( x2 - x - 3x + 3 )
= ( x - 2 )[ x( x - 1 ) - 3( x - 1 ) ]
= ( x - 2 )( x - 1 )( x - 3 )
b) x3 - 6x2 - 9x + 14
= ( x3 - x2 ) - ( 5x2 - 5x ) - ( 14x - 14 )
= x2( x - 1 ) - 5x( x - 1 ) - 14( x - 1 )
= ( x - 1 )( x2 - 5x - 14 )
= ( x - 1 )( x2 + 2x - 7x - 14 )
= ( x - 1 )[ x( x + 2 ) - 7( x + 2 ) ]
= ( x - 1 )( x + 2 )( x - 7 )
c) x3 + 6x2 + 11x + 6
= ( x3 + 2x2 ) + ( 4x2 + 8x ) + ( 3x + 6 )
= x2( x + 2 ) + 4x( x + 2 ) + 3( x + 2 )
= ( x + 2 )( x2 + 4x + 3 )
= ( x + 2 )( x2 + x + 3x + 3 )
= ( x + 2 )[ x( x + 1 ) + 3( x + 1 ) ]
= ( x + 2 )( x + 1 )( x + 3 )
e) x6 - 9x3 + 8
Đặt t = x3
bthuc <=> t2 - 9t + 8
= t2 - t - 8t + 8
= t( t - 1 ) - 8( t - 1 )
= ( t - 1 )( t - 8 )
= ( x3 - 1 )( x3 - 8 )
= ( x - 1 )( x2 + x + 1 )( x - 2 )( x2 + 2x + 4 )
\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)=\left(5x-1\right)\left(x+y\right)\)
\(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(5x-1\right)\left(x+y\right)\)
Sửa đề : a, \(x\left(x-2\right)^2-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x\left(x^2-4x+4\right)-\left(x^3-8\right)=x^3-4x^2+4x-x^3+8\)
\(=-4x^2+4x+8\)
x( x - 2 )2 - ( x - 2 )( x2 + 2x + 4 ) < bỏ cái 2 đi nhá :v >
= x( x2 - 4x + 4 ) - ( x3 - 8 )
= x3 - 4x2 + 4x - x3 + 8
= -4x2 + 4x + 8
olm hoi bai nhu cai dau buoi á
Tham khảo câu trả lời