Giải phương trình nghiệm nguyên dương: 2xy = 3(x+y) + 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I R H K J M N O
Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB
Ta có \(DH.DA=DB.DC\)(1)
Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)
Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên
\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)
\(\Rightarrow AK.HD=AD.HK\)
\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)
\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)
\(\Leftrightarrow2.AD.DH=2.DK.DJ\)
\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)
Từ (1) và (2) ta có\(DK.DJ=DH.DA\)
=> K là trực tâm của tam giác IBC
để 2^x+4^x=8^x
thì x phải =1
hok tốt
2x+4x=8x
2x+22x=23x
2x+22x - 23x=0
2x (1+22- 23)=0
2x (-3)=0
Suy ra 2x=0 ( vô lí)
Vậy không có giá trị của x thỏa mãn đề bài
Kẻ Ax là tiếp tuyến tại A với (O).
Có: xABˆ=ACBˆ(=12sđAB⌢)
Xét ΔvABDΔvABD, có:
BACˆBAC^: chung;
⇒ΔvABD∼ΔvACE(gn)⇒ΔvABD∼ΔvACE(gn)
⇒ABAD=AEAC⇒ABAD=AEAC
mà BACˆBAC^ chung
⇒ΔADE∼ΔABC(cgc)⇒ΔADE∼ΔABC(cgc)
⇒AEDˆ=ACBˆ=xABˆ⇒AED^=ACB^=xAB^(ở vị trí SLT)
⇒Ax//DE
mà Ax⊥OA NÊN DE⊥OA
Ta có: AM là đường cao thứ 3( đi qua trực tâm H)
Xét ΔBMHΔBMH và ΔBDCΔBDC có:
BMHˆ=BDCˆ(=900)BMH^=BDC^(=900)
BˆB^ chung
⇒ΔBMH≈ΔBDC(g−g)⇒ΔBMH≈ΔBDC(g−g)
⇒BMBD=BHBC⇒BMBD=BHBC⇔BD.BH=BM.BC(1)⇔BD.BH=BM.BC(1)
Xét ΔCMHΔCMH và ΔCEBΔCEB có:
CMHˆ=CEBˆ(=900)CMH^=CEB^(=900)
CˆC^ chung
⇒ΔCMH=ΔCEB(g−g)⇒ΔCMH=ΔCEB(g−g)
⇒CMCH=CECB⇔CH.CE=BC.CM(2)⇒CMCH=CECB⇔CH.CE=BC.CM(2)
Cộng (1) và (2) vế theo vế, ta được:
BD.BH+CH.CE=BM.BC+BC.CMBD.BH+CH.CE=BM.BC+BC.CM
⇒BD.BH+CH.CE=BC.(BM+CM)=BC2(đpcm)⇒BD.BH+CH.CE=BC.(BM+CM)
=BC2(đpcm)
Ta có: \(\sin^2x+\cos^2x=1\)
Đặt: \(a=\sin x\); \(b=\cos x\)với \(-1\le a;b\le1\)
khi đó có hệ: \(\hept{\begin{cases}a^2+b^2=1\\ab=\frac{12}{15}\end{cases}}\)giải hệ này ra nhé
Hình như cô Chi nhầm sin alpha thành sin x rồi, , ko biết đúng hay không vì em chỉ mới có lớp 7
Ta có hệ thức: \(sin^2\alpha+cos^2\alpha=1\)(có thể chứng minh bằng định lý Pythagoras)
Đặt \(sina=u,sinb=v\)
Ta có hệ phương trình \(\hept{\begin{cases}uv=\frac{12}{25}\\u^2+v^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2uv=\frac{24}{25}\\u^2+v^2=1\end{cases}}\)
\(\Rightarrow\left(u+v\right)^2=\frac{49}{25}\Rightarrow u+v=\frac{7}{5}\)
Đến đây ta lại có hệ \(\hept{\begin{cases}uv=\frac{12}{25}\\u+v=\frac{7}{5}\end{cases}}\)
u,v là nghiệm của phương trình \(x^2-\frac{7}{5}x+\frac{12}{25}=0\)
\(\Delta=\left(\frac{7}{5}\right)^2-4.\frac{12}{25}=\frac{1}{25},\sqrt{\Delta}=\frac{1}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\frac{7}{5}+\frac{1}{5}}{2}=\frac{4}{5}\\x=\frac{\frac{7}{5}-\frac{1}{5}}{2}=\frac{3}{5}\end{cases}}\)
Khi đó \(u=\frac{4}{5};v=\frac{3}{5}\)
Vậy \(sin\alpha=\frac{4}{5};cos\alpha=\frac{3}{5}\)
\(\Delta=\left(2m-1\right)^2-4.\left(m-1\right).2=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\forall m\)
Theo hệ thức viet có:
\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)
\(4x_1^2+4x_2^2+2x_1x_2\)\(=4x_1^2+4x_2^2+8x_1x_2-6x_1x_2=4\left(x_1+x_2\right)^2-6x_1x_2=4.\left(\frac{1-2m}{2}\right)^2-6.\frac{m-1}{2}=1\)
\(\Leftrightarrow\left(1-2m\right)^2-3\left(m-1\right)=1\)
Tự làm tiếp nhé
2xy=3(x+y)+1
2xy=3x+3y+1
=>2xy-3x-3y=1=>2xy-3y=3x+1=>(2x-3)y=3x+1. Vì x nguyên nên 2x-3 khác 0.
=>y=(3x+1)/(2x-3).
Để y nguyên thì 2y cũng nguyên=>2y=(6x+2)/(2x-3)=>(6x-9+11)/(2x-3)=3+11/(2x-3).
Để 2y nguyên thì 2x-3 là ước của 11.
Nếu 2x-3=11 thì x=7, y=2.(chọn)
Nếu 2x-3=1 thì x=2, y=7.(chọn)
Nếu 2x-3=-1 thì x=1, y=-5(loại vì y nguyên dương)
Nếu 2x-3=-11 thì x=-4, y=1(loại vì x nguyên dương)
Vậy (x,y)=(2,7) và (7,2).