Bài 1 : Cho P(x) là một đa thức có hệ số nguyên và hệ số cao nhất bằng 1. Chứng minh rằng nếu đa thức có nghiệm hữu tỉ thì nghiệm đó phải nguyên.
Bài 2 : Tìm x nguyên để x4 - 7x3 + 14x2 - 7x + 1 là một số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)
Áp dụng Cauchy ta được:
\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)
\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)
\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)
\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)
\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)
\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)
\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)
\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)
\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)
Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)
a) 3xy2 - 45x2y = 3xy( y - 15x )
b) 25y2 - 4x2 + 4x - 1
= 25y2 - ( 4x2 - 4x + 1 )
= ( 5y )2 - ( 2x - 1 )2
= ( 5y - 2x + 1 )( 5y + 2x - 1 )
c) x2 - 8x - 33
= x2 - 11x + 3x - 33
= x( x - 11 ) + 3( x - 11 )
= ( x - 11 )( x + 3 )
Bài 4.
a) 3xy2 - 45x2y = 3xy( y - 15x )
b) 25y2 - 4x2 + 4x - 1
= 25y2 - ( 4x2 - 4x + 1 )
= ( 5y )2 - ( 2x - 1 )2
= ( 5y - 2x + 1 )( 5y + 2x - 1 )
c) x2 - 5x + xy - 5y
= x( x - 5 ) + y( x - 5 )
= ( x - 5 )( x + y )
d) x2 - 8x - 33
= x2 + 3x - 11x - 33
= x( x + 3 ) - 11( x + 3 )
= ( x + 3 )( x - 11 )
Bài 5.
a) A = ( x - 2 )3 - x2( x - 4 ) + 8
= x3 - 6x2 + 12x - 8 - x3 + 4x2 + 8
= -2x2 + 12x
B = ( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9
= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9
= x - 3 - x2 - 7x - 9
= -x2 - 6x - 12
b) Với x = -1 thì A = -2.(-1)2 + 12.(-1) = -2 - 12 = -14