K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

+) Với m = 0 ta có nghiệm x = 2 > 0 và y = -1/2 < 0 ( thỏa mãn)

+) Với m khác 0

Ta có: \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)

<=> \(\hept{\begin{cases}mx+m^2y=2m\\mx-2y=1\end{cases}}\)

<=> \(\hept{\begin{cases}m^2y+2y=2m-1\\x=2-my\end{cases}}\)

<=> \(\hept{\begin{cases}y=\frac{2m-1}{m^2+2}\\x=2-\frac{2m^2-m}{m^2+2}=\frac{4+m}{m^2+2}\end{cases}}\) 

Với đk: x > 0 ; y < 0 khi đó \(\hept{\begin{cases}\frac{2m-1}{m^2+2}< 0\\\frac{4+m}{m^2+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{2}\\m>-4\end{cases}}\Leftrightarrow-4< m< \frac{1}{2}\)

vì m khác 0 nên ta có: \(\hept{\begin{cases}-4< m< \frac{1}{2}\\m\ne0\end{cases}}\)

Kết hợp 2 TH ta có: -4 < m <1/2

13 tháng 3 2020

\(A=\frac{\left(1+\sqrt{x}\right)^2-4\sqrt{x}}{\sqrt{x}-1}\)  \(\left(x\ge0;x\ne1\right)\)

\(A=\frac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

và \(B=\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{x}+1}\)

\(B=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(B=\sqrt{3}+2+\frac{1}{\sqrt{3}-\sqrt{2}}+\sqrt{2}\)

\(B=\sqrt{3}+\sqrt{2}+\frac{1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)+1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{3-2+1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{2}{\sqrt{3}-\sqrt{2}}+2\)

để A = B thì \(\sqrt{x}-1\)\(\frac{2}{\sqrt{3}-\sqrt{2}}+2\)

\(\sqrt{x}=\frac{2}{\sqrt{3}-\sqrt{2}}+3\)

\(\sqrt{x}=\frac{2\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+3\)

\(\sqrt{x}=2\sqrt{3}+2\sqrt{2}+3\)

tới bước này tui bí :(( mong các bạn giỏi khác giúp bạn :D

13 tháng 3 2020

Ta có : \(\widehat{IBA}+\widehat{ICB}=90^o\)

\(\widehat{IAB}+\widehat{IAO}+\widehat{OAC}=180^o\)mà \(\widehat{IAO}=90^o\)\(\Rightarrow\widehat{IAB}+\widehat{OAC}=90^o\)

Mà \(OA=OC\Rightarrow\)\(\Delta OAC\)cân tại O \(\Rightarrow\widehat{OCA}=\widehat{OAC}\)

Từ đó suy ra \(\widehat{IAB}=\widehat{IBA}\Rightarrow\Delta IAB\)cân tại I 

\(\Rightarrow IA=IB\)

13 tháng 3 2020

1) hình mình ko vẽ nhé

b) mình nghĩ phần này chưa tới tứ giác nội tiếp nên làm cách này

Xét \(\Delta OIE\)và \(\Delta OAH\)có :

\(\widehat{OEI}=\widehat{OHA}\left(=90^o\right);\widehat{EOI}\)( góc chung )

\(\Rightarrow\Delta OEI\approx\Delta OHA\left(g.g\right)\)

\(\Rightarrow\frac{OE}{OH}=\frac{OI}{OA}\Rightarrow OI.OH=OE.OA\)

Áp dụng hệ thức lượng vào \(\Delta ACO\)vuông tại C, ta có :

\(OC^2=OE.OA\)

Suy ra \(OI.OH=OC^2=R^2\)

13 tháng 3 2020

2) \(\hept{\begin{cases}mx-y=2\left(1\right)\\x+my=1\left(2\right)\end{cases}}\)

Lấy ( 2 ) - ( 1 ), ta được : \(x+my-mx+y=-1\)

\(\Leftrightarrow m\left(y-x\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\y-x=0\end{cases}\Rightarrow\orbr{\begin{cases}m=0\\x=y=-\frac{1}{2}\end{cases}}}\)

Thay \(x=y=-\frac{1}{2}\)vào ( 1 ) ta tìm được m = -3

Vậy m = 0 hoặc m = -3 thì x + y = -1

3) Gọi diên tích thửa ruộng là S ; chiều dài là a ; chiều rộng là b \(\Rightarrow ab=S\)

Nếu chiều rộng tăng thêm 2m, chiều dài giảm 2 m thì S tăng thêm 30m2 nên ta có pt : \(\left(b+2\right)\left(a-2\right)=S+30\)

hay \(\left(b+2\right)\left(a-2\right)=ab+30\)\(\Rightarrow a-b=17\)

Nếu chiều rộng giảm đi 2m, chiều dài tăng 5m thì S giảm 20m2 nên ta có pt : \(\left(b-2\right)\left(a+5\right)=S-20=ab-20\)

\(\Rightarrow-2a+5b=-10\)

Từ đó ta có hệ phương trình : \(\hept{\begin{cases}a-b=17\\-2a+5b=-10\end{cases}\Rightarrow\hept{\begin{cases}a=25\\b=8\end{cases}}}\)

Vậy S thửa ruộng là : \(ab=25.8=200\)m2

13 tháng 3 2020

a) M = \(\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}-\frac{\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)}+\frac{x^2-1}{\sqrt{x}\left(x-1\right)}\)(x>0;x khác 1)

\(\frac{x^2-\sqrt{x}+x\sqrt{x}-1-x^2-\sqrt{x}+x\sqrt{x}+1+x^2-1}{\sqrt{x}\left(x-1\right)}\)

\(\frac{x^2+2x\sqrt{x}-2\sqrt{x}-1}{\sqrt{x}\left(x-1\right)}\)

\(\frac{2\sqrt{x}\left(x-1\right)+\left(x-1\right)\left(x+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(\frac{\left(x-1\right)\left(2\sqrt{x}+x+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b) M = 9/2

<=> \(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}=\frac{9}{2}\)

<=> \(2x+4\sqrt{x}+2=9\sqrt{x}\)

<=> \(2x-5\sqrt{x}+2=0\)

<=> \(2x-\sqrt{x}-4\sqrt{x}+2=0\)

<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=4\end{cases}\left(tm\right)}\)

Vậy...

c) \(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)\(\frac{x+2\sqrt{x}+1}{\sqrt{x}}=2+\frac{x+1}{\sqrt{x}}\ge2+\frac{2\sqrt{x}}{\sqrt{x}}=4\)

Dấu "=" xảy ra <=> x = 1.

Vậy M >=4 

đề : Cho đoạn thẳng AB cùng điểm C thuộc đoạn thẳng đó (C khác A và B). Về cùng một nửa mặt phẳng bờ AB, kẻ hai tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm M cố định. Kẻ tia Cz vuông góc với tia CM tại C, tia Cz cắt tia By tại K. Vẽ đường tròn tâm O đường kính MC cắt MK tại E

13 tháng 3 2020

Quan trọng là dự đoán:D

Dự đoán Max =70 khi (x;y) =(-8;0)

Ta có: \(70-P=\frac{6\left(x+y+8\right)^2+17y^2}{11}\ge0\)

Hoặc một phân tích khác:\(70-P=\frac{\left(6x+23y+48\right)^2+102\left(x+8\right)^2}{253}\ge0\)

13 tháng 3 2020

Bạn sử dụng đẳng thức \(ax^2+bx+c=a\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\)

Và chú ý: \(70-P=70-\left[P-\frac{17}{11}\left\{x^2+2y^2+2xy-\left(24-5x-5y\right)\right\}\right]\)