.Tam giác FEI vuông tại E, đường cao EQ, FI = 5cm, EQ = 2cm. Tìm tổng độ dài hai cạnh góc
vuông. Mọi người giúp mình vs ,mình đang cần gấp ạ <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-3x-270=0
<=> x^2 - 18x + 15x - 270 = 0
<=> x(x - 18) + 15(x - 18) = 0
<=> (x + 15)(x - 18) = 0
<=> x = - 15 hoặc x = 18
vậy_
kết bạn nhé ^^
ID cắt EF tại G. cần chứng minh A,G,M thẳng hàng
Ta có : AG cắt BC tại M'. đường thẳng qua G song song với BC cắt AB,AC tại S,T
Dễ thấy \(ID\perp BC\)\(\Rightarrow IG\perp ST\)
Tứ giác FSGI nội tiếp, tứ giác IGET nội tiếp \(\Rightarrow\hept{\begin{cases}\widehat{IFG}=\widehat{ISG}\\\widehat{ITG}=\widehat{IEG}\end{cases}\Rightarrow\widehat{ISG}=\widehat{ITG}}\)( Vì \(\widehat{IFG}=\widehat{IEG}\))
\(\Rightarrow\Delta IST\)cân tại I có \(IG\perp ST\)nên GS = GT
Xét hình thang STCB có BS,M'G,CT cắt nhau tại A và G là trung điểm của ST nên M' là trung điểm của BC
\(\Rightarrow M'\equiv M\)hay A,G,M thẳng hàng
AM cắt KI tại H
Dễ thấy \(AI\perp EF\)nên \(KG\perp AI\)
\(\Delta AIK\)có \(IG\perp AK;KG\perp AI\)nên G là trực tâm \(\Rightarrow AG\perp KI\)tại H
AI cắt EF tại N
Tứ giác ANHK nội tiếp \(\Rightarrow IH.IK=IN.IA=IF^2=ID^2\Rightarrow\frac{IH}{ID}=\frac{ID}{IK}\)
\(\Rightarrow\Delta IDH\approx\Delta IKD\left(c.g.c\right)\)\(\Rightarrow\widehat{IDH}=\widehat{IKD}\)( 1 )
Tứ giác IHMD nội tiếp \(\Rightarrow\widehat{IDH}=\widehat{IMH}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{IKD}=\widehat{IMH}\)
Mà \(\widehat{IMH}+\widehat{MIH}=90^o\)suy ra \(\widehat{IKD}+\widehat{MIH}=90^o\)
\(\Rightarrow MI\perp DK\)