giải phương trình
\(^{X^2+X+12\sqrt{X+1}=36}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: y \(\ne\)0
\(\hept{\begin{cases}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{cases}}\)<=> \(\hept{\begin{cases}\left(x+\frac{1}{y}\right)^2-\frac{2x}{y}+\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{cases}}\)<=> \(\hept{\begin{cases}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{cases}}\)
<=> \(\hept{\begin{cases}\left(x+\frac{1}{y}\right)^2+\left(x+\frac{1}{y}\right)=6\left(1\right)\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{cases}}\)
Giải pt (1) : Đặt a = \(x+\frac{1}{y}\)
Khi đó ta có pt: a2 + a = 6
<=> a2 + a - 6 = 0 <=> (a - 2)(a + 3) = 0 <=> \(\orbr{\begin{cases}a=2\\a=-3\end{cases}}\)
* Với a = 2, ta có \(x+\frac{1}{y}\) = 2 => \(\frac{x}{y}=3-2=1\)<=> x = y
Thay x = y vào pt: \(x+\frac{1}{y}\) = 2 ta dc:
y + \(\frac{1}{y}=2\) <=> y2 + 1 = 2y <=> y2 - 2y + 1 = 0 <=> (y - 1)2 = 0 <=> y = 1 (tmđk) => x = 1
* Với a = -3, ta có \(x+\frac{1}{y}\) = -3 => \(\frac{x}{y}=3+3=6\)<=> x = 6y
Thay x = 6y vào pt: \(x+\frac{1}{y}=-3\)ta dc:
\(6y+\frac{1}{y}=-3\) <=> 6y2 + 1 = -3y <=> 6y2 + 3y + 1 = 0 (\(\Delta=-15\)<0 ) (VN)
Vậy nghiệm của hpt là: (1;1)
P/S: xem lại nhé, t làm hơi ẩu
=\(4x-4\sqrt{x}+1+\)3
=\(\left(2\sqrt{x}-1\right)^{^2}\)+3\(\ge\)3 với mọi x\(\inℝ\)
Dấu bằng xảy ra<=>\(2\sqrt{x}-1=0\)<=>\(2\sqrt{x}=1\)
<=> \(\sqrt{x}=\frac{1}{2}\)<=>\(x=\frac{1}{4}\)
Vây minA=3 tại \(x=\frac{1}{4}\)
A, thôi chết nhầm đề rồi
\(\frac{x^2}{\left(x+2\right)^2}+3=3x^2-6x\left(đkxđ:x\ne-2\right)\)
\(< =>\frac{x^2}{\left(x+2\right)^2}=3x^2-6x-3\)
\(< =>x^2=\left(3x^2-6x-3\right)\left(x^2+4x+4\right)\)
\(< =>x^2=3x^4+12x^3+12x^2-6x^3-24x^2-14x-3x^2-12x-12\)
\(< =>3x^4+6x^3-16x^2-26x-12=0\)
Đến đây dễ rồi ha !
\(\frac{x^2}{\left(x+2\right)^2}+3=3x^2-6xĐK:x\ne-2\)
\(\Leftrightarrow\frac{x^2}{\left(x+2\right)^2}+\frac{3\left(x+2\right)^2}{\left(x+2\right)^2}=\frac{\left(3x^2-6\right)\left(x+2\right)^2}{\left(x+2\right)^2}\)
Khử mẫu và rút gọn ta đc : \(-3x^4-12x^3-2x^2+36x+36=0\)
Mời nhân tài chứ e chịu r
ĐK : \(x+1>0=>x\ge-1\)
Đặt \(\sqrt{x+1}=t=>t\ge0=>x+1=t^2=>x=t^2-1=>x^2=t^4-2t^2+1\)
Khi đó ta có \(t^4-2t^2+1+t^2-1+12t-36=0\)
=>\(t^4-t^2+12t-36=0\)
=>\(t^4-2t^3+2t^3-4t^2+3t^2-6t+18t-36=0\)
=>\(t^3\left(t-2\right)+2t^2\left(t-2\right)+3t\left(t-2\right)+18\left(t-2\right)=0\)
=>\(\left(t-2\right)\left(t^3+2t^2+3t+18\right)=0\)
=>\(\hept{\begin{cases}t=2\\t^3+2t^2+3t+18=0\left(loại\right)do\left(t\ge0=>t^3+2t^2+3t+18>0\right)\end{cases}}\)
=>\(t=2=>x+1=4=>x=3\)(thảo mãn đk)
zậy...