K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi vận tốc dự định là \(x\left(km/h\right)x>6\)

Thực tế \(\left(x-6\right),\left(x+12\right)\)

Thời gian dự định  \(t=\frac{80}{x}\)

Thời gian thực tế \(\frac{40}{\left(x-6\right)}+\frac{40}{\left(x+12\right)}\)

Ta có pt: \(\frac{80}{x}=\frac{40}{\left(x-6\right)}+\frac{40}{\left(x+12\right)}\)

\(\Leftrightarrow x=24\)

Vận tốc dự định là \(24km/h\)

27 tháng 3 2020

Với y = 0 ta có: \(x^2=\frac{1}{2}\)=> M = 1/2 (1)

Với y khác 0

Ta có: \(M=x^2-xy+y^2=\frac{x^2-xy+y^2}{2x^2-xy+y^2}=\frac{\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}{2\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}\)

Đặt: \(\frac{x}{y}=t\)

Ta có: \(M=\frac{t^2-t+1}{2t^2-t+1}\Leftrightarrow\left(2M-1\right)t^2+\left(1-M\right)t+M-1=0\)(1)

+) Nếu 2M - 1 = 0 <=> M = 1/2 (2) 

khi đó: t = 1

+) Nếu M khác 1/2

(1) có \(\Delta=\left(1-M\right)^2-4\left(2M-1\right)\left(M-1\right)=-7M+10M-3\)

Để (1) có nghiệm thì \(\Delta\ge0\)<=> \(\frac{3}{7}\le M\le1\)(3)

Từ (1); (2); (3) ta có GTNN của M = 3/7 

Dấu "=" xảy ra <=> t = 2 hay \(\frac{x}{y}=2\Leftrightarrow x=2y\)

Thay vào \(2x^2-xy+y^2=1.\) ta có: \(8y^2-2y^2+y^2=1.\)

<=> \(y=\pm\frac{1}{\sqrt{7}}\)

Với \(y=\frac{1}{\sqrt{7}}\Rightarrow x=\frac{2}{\sqrt{7}}\)

Với \(y=\frac{-1}{\sqrt{7}}\Rightarrow x=\frac{-2}{\sqrt{7}}\)

Kết luận vậy min M = 1 tại ( x ; y ) \(\in\left\{\left(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}}\right);\left(\frac{-2}{\sqrt{7}};\frac{-1}{\sqrt{7}}\right)\right\}\)

27 tháng 3 2020

ĐK: x >= -5/2

\(x^2+6x+7=4\sqrt{2x+5}\)

<=> \(x^2+8x+16=2x+5+4\sqrt{2x+5}+4\)

<=> \(\left(x+4\right)^2=\left(\sqrt{2x+5}+2\right)^2\)

<=> \(\orbr{\begin{cases}x+2=\sqrt{2x+5}\\-x-6=\sqrt{2x+5}\end{cases}}\)Em làm tiếp nha!

27 tháng 3 2020

Chứng minh tương đương

\(\left(3a+b\right)\left(2c+a+b\right)\le\left(2a+b+c\right)^2\)

<=> \(6ac+2bc+3a^2+ab+3ab+b^2\le4a^2+b^2+c^2+4ab+4ac+2bc\)

<=> \(a^2+c^2-2ac\ge0\)

<=> \(\left(a-c\right)^2\ge0\)đúng với mọi a; b; c 

Vậy bdtban đầu đúng

Dấu "=" xảy ra <=> a = c.

27 tháng 3 2020

Theo AM-GM có: 

\(\left(3a+b\right)\left(2c+a+b\right)\le\frac{\left(4a+2b+2c\right)^2}{4}=\left(2a+b+c\right)^2\)

Dấu " = " xảy ra <=> 3a+b=2c+a+b 

                          <=> a=c

27 tháng 3 2020

tao vừa cho may boi vi tao thay no nguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu