X2 - 2(m+1)x+2m+1=0
tìm m để phương trình có 2 nghiệm phân biệt thoả mãn:
x13 + x23=2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P=a-2\sqrt{ab}+3b-2\sqrt{a}+1\)
\(=a-2\sqrt{a}\left(\sqrt{b}+1\right)+b+2\sqrt{b}+1+2b-2\sqrt{b}\)
\(=\left(\sqrt{a}-\sqrt{b}-1\right)^2+2\left(b-\sqrt{b}+\frac{1}{4}\right)-\frac{1}{2}\)
\(=\left(\sqrt{a}-\sqrt{b}-1\right)^2+2\left(\sqrt{b}-\frac{1}{2}\right)^2-\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" \(\Leftrightarrow b=\frac{1}{4};a=\frac{9}{4}\)
Đặt \(P=\left(1-\frac{x}{x-\sqrt{x}+1}\right):\frac{x+2\sqrt{x}+1}{x\sqrt{x}+1}\)
Ta có: \(x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(\sqrt{x}+x+1\right)\)
\(\Rightarrow P=\left(\frac{x\sqrt{x}+1}{x\sqrt{x}+1}-\frac{x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\cdot\frac{x\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\)
\(=\frac{x\sqrt{x}+1-x\sqrt{x}-x}{\left(\sqrt{x}+1\right)^2}=\frac{1-x}{\sqrt{x}+1}=\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}+1}\)
\(=1-\sqrt{x}\)
ĐK: xy\(\ne\)0
HPT đã cho tương đương: \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=5\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=9\end{cases}}\)
Đặt \(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=S\\\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=P\end{cases}}\)
Hệ trở thành:
\(\hept{\begin{cases}S^2-2P=9\\S=5\end{cases}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{x}=2;y+\frac{1}{y}=3\\x+\frac{1}{x}=3;y+\frac{1}{y}=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1;y=\frac{3\pm\sqrt{5}}{2}\\x=\frac{3\pm\sqrt{5}}{2};y=1\end{cases}}}\)
Vậy HPT đã cho có nghiệm (x;y)=\(\left(1;\frac{3\pm\sqrt{5}}{2}\right);\left(\frac{3\pm\sqrt{5}}{2};1\right)\)
\(\hept{\begin{cases}\left(x+y\right)\left(1+\frac{1}{xy}\right)=5\\\left(x^2+y^2\right)\left(1+\frac{1}{x^2y^2}\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{x}=5\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=5\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=13\end{cases}}\)
\(\left(x+\frac{1}{x};y+\frac{1}{y}\right)\rightarrow\left(a;b\right)\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}a+b=5\\a^2+b^2=13\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=5\\\left(a+b\right)^2-2ab=13\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=5\\ab=6\end{cases}}}\)
Tự làm nốt nhé
điều kiện xác đinh \(x\ge-\frac{1}{2}\)
ta có \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\Leftrightarrow5x^4+2x+1-2\sqrt{2x+1}+1=0\)
\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0=>\orbr{\begin{cases}5x^4=0\\\sqrt{2x+1}-1=0\end{cases}\Leftrightarrow x=0\left(nhận\right)}\)
zậy \(S=\left\{0\right\}\)
ĐK: \(x\ge\frac{-1}{2}\). PT đã cho có thể viết lại thành
\(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)
Do \(5x^4\ge0,\left(\sqrt{2x+1}-1\right)^2\ge0\)nên PT trên chỉ thỏa mãn khi \(\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\)
Giải hệ này ta được x=0
Vậy PT đã cho có nghiệm duy nhất x=0
\(\hept{\begin{cases}xy+3=3x+y\\x^2+2y^2+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(y-3\right)=0\\x^2+2y^2+y=1\left(2\right)\end{cases}}\)
Xét: x=1
\(\Rightarrow\left(2\right)\Leftrightarrow2y^2+y=0\Leftrightarrow\hept{\begin{cases}y=0\\y=-\frac{1}{2}\end{cases}}\)
Xét: y=3
\(\Rightarrow\left(2\right)\Leftrightarrow x^2+2.3^2+3>0\)=> vô nghiệm.
KL:.....
a) \(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\left(ĐK:x\ge1;x\ne3\right)\)
\(=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-3}=\sqrt{x-1}+\sqrt{2}\)
c) \(P=\sqrt{x-1}+\sqrt{2}\)
Vì \(\sqrt{x-1}\ge0\forall x\inĐK\)
=> P\(\ge\sqrt{2}\)
Dấu "=" <=> x=1
Vậy MinP=\(\sqrt{2}\)tại x=1
Ta có:
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{a\left(a+1\right)}{8}+\frac{a\left(b+1\right)}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)
\(\Rightarrow LHS+\frac{a^2+b^2+c^2+ab+bc+ca+2\left(a+b+c\right)}{8}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow LHS\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)
\(\ge\frac{a+b+c}{2}-\frac{a^2+b^2+c^2}{4}\)
Có ý tưởng đến đây thôi nhưng lại bị ngược dấu rồi :(
BĐT <=> \(\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)
<=> \(\frac{ab+bc+ac+a+b+c}{abc+1+ab+bc+ac+a+c+b}\ge\frac{3}{4}\)
<=> \(4\left(ab+bc+ac+a+b+c\right)\ge3\left(ab+bc+ac+a+b+c+2\right)\)
<=> \(ab+bc+ac+a+b+c\ge6\)(1)
(1) luôn đúng do \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3;a+b+c\ge3\sqrt[3]{abc}=3\)
=> BĐT được CM
Dấu bằng xảy ra khi \(a=b=c=1\)
để phương trình có 2 nghiệm phân biệt thỏa mãn thì
\(\Delta'>0\)
=>\(\left(m+1\right)^2-\left(2m+1\right)>0\)
\(\Leftrightarrow m^2+2m+1-2m-1>0\Leftrightarrow m^2>0\Leftrightarrow m\ne0\)
theo định lý vi et ta có\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+1\end{cases}}\)
ta có \(x_1^3+x_2^3=2019\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=2019\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2+2x_1x_2+x_2^2-3x_1x_2\right)=2019\)
\(\Leftrightarrow\left(x_1+x_2\right).\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=2019\)
\(\Rightarrow2\left(m+1\right).\left[4\left(m+1\right)^3-3\left(2m+1\right)\right]=2019\)
\(=>2(m+1).\left[4m^2+8m+4-6m-3\right]=2019\)
\(\Rightarrow2\left(m+1\right)\left(4m^2+2m+1\right)-2019=0\)
\(\Rightarrow8m^3+4m^2+2m+8m^2+4m+2-2019=0\)
\(=>8m^3+12m^2+6m-2017=0\)
\(\Rightarrow m=5,8\left(\forall m\right)\)