Cho hệ phương trình:
\(\hept{\begin{cases}2x+y=m^2+m\\\left(m^2+3\right)x+2y=4\end{cases}}\)
Với giá trị nào của m thì hệ phương trình có vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HPT có nghiệm duy nhất \(\Leftrightarrow\frac{m+5}{m}\ne\frac{3}{2}\Leftrightarrow m\ne10\)
nếu không được dùng công thức như trên, ta có thể làm cụ thể
PT tương đương với :
\(\hept{\begin{cases}2\left(m+5\right)x+6y=2\\3mx+6y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(10-m\right)=14\\y=\frac{-4-mx}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{14}{10-m}\\y=\frac{-4-mx}{2}\end{cases}}\)
Để HPT có nghiệm duy nhất thì \(10-m\ne0\Leftrightarrow m\ne10\)
dễ dàng nhận thấy AHDI là hình chữ nhật do đó AHDI nội tiếp đường tròn.
tam giác HDI là tam giác vuông tại D đường tròn ngoại tiếp tam giác HDI có tâm (O) là trung điểm của DI mà DI là đường trung trực của DE do đó OD=OE vậy E cũng thuộc đường tròn ngoại tiếp tam giác HDI do đó HDIE là tứ giác nội tiếp.
tâm (O) của đường tròn ngoại tiếp tứ giác HDIE là trung điểm của DI.
do HDIE là tứ giác nội tiếp và AHDI cũng là tứ giác nội tiếp nên A,H,D,I,E cùng thuộc một đường tròn
Với x > 9
\(C=\frac{x}{\sqrt{x}-3}=\frac{x-6\sqrt{x}+9+6\sqrt{x}-18-9+18}{\sqrt{x}-3}\)
\(=\frac{\left(\sqrt{x}-3\right)^2+6\left(\sqrt{x}-3\right)+9}{\sqrt{x}-3}\)
\(=\sqrt{x}-3+\frac{9}{\sqrt{x}-3}+6\ge2\sqrt{9}+6=12\) ( AM - GM cho 2 số không âm )
Dấu "=" xảy ra <=> \(\sqrt{x}-3=\frac{9}{\sqrt{x}-3}\Leftrightarrow x=36\)thỏa mãn
Vậy min c = 9 đạt tại x = 36.
1)
\(\hept{\begin{cases}\left(\sqrt{2}+\sqrt{3}\right)x-y\sqrt{2}=\sqrt{2}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-y\left(\sqrt{2}+\sqrt{3}\right)=\sqrt{2}+\sqrt{3}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Đặt \(a=x^2;b=y^2;c=z^2\)khi đó ta được xyz=1 và biểu thức P viết được thành
\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2x^2+3}+\frac{1}{z^2+2x^2+3}\)
Ta có \(x^2+y^2\ge2xy;y^2+1\ge2y\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\)
Do đó ta được \(\frac{1}{x^2+2y^2+3}\le\frac{1}{2}\cdot\frac{1}{xy+y+1}\)
Chứng minh tương tự ta có:
\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2}\cdot\frac{1}{yz+z+1};\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot\frac{1}{zx+z+1}\)
Cộng các vế BĐT trên ta được
\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
Ta cần chứng minh \(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}=1\)
Do xyz=1 nên ta được
\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{zx}{z+1+zx}+\frac{x}{1+zx+z}+\frac{1}{zx+x+1}=1\)
Từ đó ta được
\(P\le\frac{1}{2}\). Dấu "=" xảy ra <=> a=b=c=1
a) hai HPT tương đương là hai HPT có cùng tập nghiệm
b) HPT vô số nghiệm \(\Leftrightarrow\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Vô nghiệm \(\Leftrightarrow\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)
có 1 nghiệm duy nhất \(\Leftrightarrow\frac{a}{a'}\ne\frac{b}{b'}\)
\(A=\sqrt{xy}\sqrt{xz}+\sqrt{yz}\sqrt{xy}+\sqrt{xz}\sqrt{yz}\)
\(A\le\frac{xy+xz+yz+xy+xz+yz}{2}=xy+yz+zx\)
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
=> \(A\le\frac{1}{3}\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{3}\)
Điều kiện \(x\ge\frac{1}{2}\). Đặt \(y=\sqrt{\sqrt{x+1}+2}\left(y>\sqrt{2}\right)\)
ta thu được hệ \(\hept{\begin{cases}x+1+y=2\left(x+1\right)y\left(1\right)\\y^2-\sqrt{x+1}=2\left(2\right)\end{cases}}\)
\(x+1+y=\left(y^2-\sqrt{x+1}\right)\left(x+1\right)y\)
\(\Leftrightarrow\left(y\sqrt{x+1}+1\right)\left(y+x+1-y^2\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left(y\sqrt{x+1}+1\right)\left(y-2\sqrt{x+1}\right)=0\)
\(\Leftrightarrow y=2\sqrt{x+1}\)
Do đó ta có phương trình
\(\sqrt{\sqrt{x+1}+2}=2\sqrt{x+1}\)
\(\Leftrightarrow x=\frac{-15+\sqrt{33}}{32}\)
Thử lại ta thấy \(x=\frac{-15+\sqrt{33}}{32}\)là thích hợp nên đây là nghiệm duy nhất của pt đã cho
a. hai phương trình tương đương là hai phương trình có cùng 1 tập nghiệm.
b. hệ phương trình có vô số nghiệm <=> \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Hệ phương trình vô nghiệm \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)
Hệ phương trình có nghiệm duy nhất \(\frac{a}{a'}\ne\frac{b}{b'}\)
\(\hept{\begin{cases}2x+y=m^2+m\\\left(m^2+3\right)x+2y=4\end{cases}}\)
Để hpt vô nghiệm \(\Rightarrow\hept{\begin{cases}\frac{2}{m^2+3}=\frac{1}{2}\left(1\right)\\\frac{1}{2}\ne\frac{m^2+m}{4}\left(2\right)\end{cases}}\)
Giải ( 1 ) \(\Rightarrow m^2+3=4\Rightarrow m^2=1\Rightarrow m=\pm1\)( * )
GIải ( 2 ) \(\Rightarrow m^2+m\ne2\Rightarrow m^2+m-2\ne0\)
\(\Rightarrow\left(m+1\right)\left(m-2\right)\ne0\Rightarrow\hept{\begin{cases}m\ne-1\\m\ne2\end{cases}}\)( ** )
Từ ( * ) và ( ** ) \(\Rightarrow\)Để pt vô nghiệm thì m = 1