từ điểm M thuộc đường thẳng (d) ở ngoài (O) sao cho khoảng cách từ điểm O đến (d) bằng h ko đổi kẻ hai tiếp tuyến MA,MC đến (O). Gọi K là giao điểm của OM, AB. Chứng minh AB đi qua điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài nào cx hỏi z :))
BĐT cần chứng minh tương đương với :
\(x+\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}+1>4\)
Áp dụng BĐT Cô-si,
Ta có : \(x+\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}+1=\frac{x^2-1}{x}+\frac{x+1}{2x}+\frac{x+1}{2x}+\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}\)
\(\ge4\)
Dấu "=" xảy ra khi \(\frac{x^2-1}{x}=\frac{x+1}{2x}=\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}\)
giải đc cái trên là vô nghiệm nên dấu "=" không xảy ra
Rõ ràng cặp (x;y) =(t;0) với t \(\inℤ\)là một nghiệm của phương trình
Xét trường hợp y\(\ne\)0, khi đó ta viết được phương trình dưới dạng
\(2y^2+\left(x^2-3x\right)y+\left(3x^2+x\right)=0\)(1)
Xem đây là phương trình bậc hai ẩn y. Biệt thức \(\Delta\)của nó bằng
\(\left(x^2-3x\right)^2-8\left(3x^2+x\right)=\left(x^2-8x\right)\left(x+1\right)^2\)
Đến đây phương trình (1) có nghiệm y nguyên điều kiện cần là \(\Delta\)phải là số thích phương. Từ đây ta có các TH sau
TH1: x=-1 thay vào (1) ta tính được y=-1
TH2: x\(\ne\)-1, x2-8x=a2(a\(\in\)N) Lúc này ta có: (x-4)2-a2=16 hay [|x-4|-a][|x-4|+a]=16
Dễ dàng tìm được x=0 (tương ứng ới y=0, loại), x=8 (tương ứng với y=-10) và x=9 (tương ứng y=-6 hoặc y=-21)
Vậy tập nghiệm phương trình đã cho là: S={(t;0);(8;-10);(9;-6);(-1;-1)} (t\(\in\)Z)
Gắt thế,IMO 2003
Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)
Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn
Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)
\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)
Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương
Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)
\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)
Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)
Vậy.........................
Bài 1 :
\(x^2y+4xy+4y=162x-162\)
\(\Rightarrow y\left(x^2+4x+4\right)=162\left(x-1\right)\)
\(\Rightarrow y=\frac{162\left(x-1\right)}{x^2+4x+4}\)
Vì \(y\in Z\Rightarrow\frac{162\left(x-1\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x-1\right)\left(x+5\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x^2+4x-5\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x^2+4x+4-9\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow162-\frac{1458}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{1458}{\left(x+2\right)^2}\in Z\)
\(\Rightarrow\left(x+2\right)^2\in\left\{729,81,9\right\}\) vì \(\left(x+2\right)^2\) là số chính phương x>0
\(\Rightarrow x+2\in\left\{27,9,3\right\}\)
\(\Rightarrow x\in\left\{25,7,1\right\}\)
\(\Rightarrow y\in\left\{\frac{16}{3},12,0\right\}\)
\(\Rightarrow\left(x,y\right)\in\left\{\left(7,12\right),\left(1,0\right)\right\}\)
Bài 2 :
a,
E, F, G, H lần lượt là trung điểm của các cạnh AB,BC, CD, DA nên ta có:
EF là đường trung bình trong tam giác ABC nên \(\hept{\begin{cases}EF//AC\\EF=\frac{1}{2}AC\end{cases}}\)
GH là đường trung bình trong tam giác DAC nên \(\hept{\begin{cases}GH//AC\\GH=\frac{1}{2}AC\end{cases}}\)
Tứ giác EFGH có \(\hept{\begin{cases}GH//FE\\GH=FE=\frac{1}{2}AC\end{cases}}\) nên EFGH là hình bình hành
b,
EFGH là hình chữ nhật khi và chỉ khi EF vuông góc với FG hay AC vuông góc BD
A B C M
Tớ thử làm trường hợp tam giác ABC đều,còn tam giác thường chắc nhờ cô Linh Chi cứu
Tứ giác ABMC nội tiếp ( O ) nên theo định lý Ptoleme ta có \(BM\cdot AC+MC\cdot AB=BC\cdot AM\)
\(\Leftrightarrow BM+CM=AM\)
Theo BĐT Ba Con Sâu ta có:\(\frac{1}{MB}+\frac{1}{MC}\ge\frac{4}{MA}\ge\frac{4}{2R}=2R\)
Dấu "=" xảy ra tại M là điểm chính giữa cung BC
B A M K O H I h d
Gọi H là hình chiếu của O đến đường thẳng d. Khi đó : OH = h không đổi
dễ chứng minh OM \(\perp AB\)tại K
gọi giao điểm của OH với AB là I
Ta có : \(\Delta OKI~\Delta OHM\left(g.g\right)\Rightarrow\frac{OK}{OH}=\frac{OI}{OM}\Rightarrow OK.OM=OI.OH\)
Áp dụng hệ thức lượng, ta có :
\(OB^2=OK.OM=OH.OI\Rightarrow OI=\frac{OB^2}{OH}=\frac{R^2}{h}\)không đổi ( R là bán kính đường tròn (O) )
vậy AB đi qua điểm I cố định