chứng minh rằng trong các số tự nhiên thế nào cũng có số k sao cho 1983^k-1 chia hết cho 10^5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\left(1\right)\\4xy^3+y^2+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\left(2\right)\end{cases}}\)
\(VP\left(1\right)=\sqrt{\frac{1}{4}-\left(xy-\frac{1}{2}\right)^2}\le\frac{1}{2}\Rightarrow VT\left(1\right)=y^6+y^3+2x^2\le\frac{1}{2}\)
\(\Leftrightarrow2x^2+2y^3+4x^2\le1\left(3\right)\)
Từ (2)(3) => \(8xy^3+2y^3+2\ge2y^6+4x^2+4x^2+2\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow8xy^3+2\ge2y^6+8x^2+2\sqrt{2+\left(2x-y\right)^2}\)
\(\Leftrightarrow4xy^3+1\ge y^6+4x^2+\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow1-\sqrt{1+\left(2x-y\right)^2}\ge y^6-4xy^3+4x^2=\left(y^3-2x\right)^2\left(4\right)\)
\(VT\left(4\right)\le0;VP\left(4\right)\ge0\). Do đó:
(4) \(\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=2x\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=y\end{cases}}}\)<=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
Thử lại chỉ có \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)thỏa mãn
Vậy hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)
Ta có :
\(P=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{3}\)
Vậy GTNN của P là \(4+2\sqrt{3}\) khi = \(\frac{3xy}{x^3+y^3}=\frac{x^3+y^3}{xy}\)và x + y = 1
P/s : tự giải dấu "=" nhé. mình lười ghi
Ta có \(P=\frac{1}{\left(x+y\right)^3-3xy\left(x+y\right)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1-2xy}{xy\left(1-3xy\right)}\)
Theo Cosi \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Gọi \(P_0\)là một giá trị của P khi đó \(\exists x,y\)để \(P_0=\frac{1-2xy}{xy\left(1-3xy\right)}\Leftrightarrow3P_0\left(xy\right)^2-\left(2+P_0\right)xy+1=0\left(1\right)\)
Để tồn tại x,y thì (1) phải có nghiệm xy \(\Leftrightarrow\Delta=P_0^2-8P_0+4\ge0\Leftrightarrow\orbr{\begin{cases}P_0\ge4+2\sqrt{3}\\P_0\le4-2\sqrt{3}\end{cases}}\)
Để ý rằng với giả thiết bài toán thì B>0. Do đó ta có \(P_0\ge4+2\sqrt{3}\)
Với \(P_0=4+2\sqrt{3}\Rightarrow xy=\frac{2+P_0}{6P_0}=\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}\Rightarrow x\left(1-x\right)=\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow x^2-x+\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}=0\Leftrightarrow x=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2},x=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\)
Vậy \(min_P=4+2\sqrt{3}\)đạt được khi \(\orbr{\begin{cases}x=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2};y=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\\x=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2};y=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\end{cases}}\)
a) kẻ OM \(\perp\)CD
OM là 1 phần đường kính vuông góc dây CD nên đi qua trung điểm CD
\(\Rightarrow\)MC = MD
dễ thấy AHKB là hình thang vuông có OM là đường trung bình nên MH = MK
\(\Rightarrow\)CH = DK
b) gọi C',M',D' lần lượt là hình chiếu của C,M,D xuống AB
Ta có : \(\frac{CC'+DD'}{2}=MM'\)
Qua M kẻ đường thẳng // AB cắt AH,BK tại S,T
\(\Delta SHM=\Delta TKM\left(g.c.g\right)\)
\(\Rightarrow S_{SHM}=S_{TKM}\)
\(\Rightarrow S_{AHKB}=S_{ASTB}\)
Mặt khác : ASTB là hình bình hành
\(\Rightarrow S_{ASTB}=MM'.AB\)
Mà \(S_{ACB}+S_{ADB}=\frac{CC'.AB}{2}+\frac{DD'.AB}{2}=AB\left(\frac{CC'+DD'}{2}\right)=AB.MM'\)
\(\Rightarrow S_{AHKB}=S_{ACB}+S_{ADB}\)
c) Ta có : \(S_{AHKB}\)max \(\Leftrightarrow MM'\)max
Xét \(\Delta MM'O\)có : \(MO\ge MM'\)
Mà : \(MO=\sqrt{15^2-9^2}=12\)
\(\Rightarrow MM'\)max = 12
Vậy SAHKB max = AB .MM' = 360
a) Ta có : \(E=2+\frac{1}{x^2+2x+4}=2+\frac{1}{\left(x+1\right)^2+3}\) đạt GTLN
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+3}\)đạt GTLN
\(\Leftrightarrow\left(x+1\right)^2+3\)đạt GTNN \(\Leftrightarrow x=-1\)
Vậy GTLN của E là \(\frac{7}{3}\)khi x = -1
\(F=\frac{6x-8}{x^2+1}=\frac{\left(x^2+1\right)-\left(x^2-6x+9\right)}{x^2+1}=1-\frac{\left(x-3\right)^2}{x^2+1}\)
F có GTLN \(\Leftrightarrow\frac{\left(x-3\right)^2}{x^2+1}\)có GTNN khi x = 3
Vậy GTLN của F là 1 khi x = 3
Ta có: P = -28/5 < 0 => Phương trình luôn có 2 nghiệm phân biệt.
Áp dụng định lí viet ta có:
\(x_1x_2=-\frac{28}{3}\left(1\right);x_1+x_2=-\frac{m}{5}\left(2\right)\)
Theo đề bài: \(5x_1+2x_2=1\)
<=> \(5\left(x_1+x_2\right)-3x_2=1\)
<=> \(x_2=\frac{-m-1}{3}\)
=> \(x_1+\frac{-m-1}{3}=-\frac{m}{5}\)
<=> \(x_1=\frac{2m}{15}+\frac{1}{3}=\frac{2m+5}{15}\)
Thay vào (1) ta có: \(\frac{-m-1}{3}.\frac{2m+5}{15}=-\frac{28}{5}\)
<=> \(\left(m+1\right)\left(2m+5\right)=252\)
<=> \(\orbr{\begin{cases}m=-13\\m=\frac{19}{2}\end{cases}}\)
Vậy:...
Xét \(\Delta=m^2-45\cdot\left(-28\right)=m^2+560>0\forall m\)
Khi đó \(x_1=\frac{-m+\sqrt{m^2+560}}{10}\)
\(x_2=\frac{-m-\sqrt{m^2+560}}{10}\)
Khi đó \(5x_1+2x_2=\frac{5\left(-m+\sqrt{m^2+560}\right)+2\left(-m-\sqrt{m^2+560}\right)}{10}=\frac{-7m+3\sqrt{m^2+560}}{10}=1\)
\(\Rightarrow3\sqrt{m^2+560}=10+7m\)
\(\Rightarrow9\left(m^2+560\right)=49m^2+140m+100\)
\(\Rightarrow40m^2+140m-4940=0\)
\(\Rightarrow\orbr{\begin{cases}m=\frac{19}{2}\\m=-13\end{cases}}\)
\(\Delta=\left(2m-1\right)^2+4m=4m^2+1>0,\forall m\)
=> Phương trình có 2 nghiệm phân biệt
Áp dụng định lí viet ta có: \(x_1+x_2=-\left(2m-1\right);x_1.x_2=-m\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(2m-1\right)^2+3m=4m^2-m+1\)
\(=\left(2m\right)^2-2.2m.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+1\)
\(=\left(2m-\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
Dấu "=" xảy ra <=> m = 1/8
Vậy min A = 15/16 khi m = 1/8