cho tam giác abc có ba góc nhọn (ab<ac) nội tiếp đường tròn o .Các đường cao bd ce của tam giác cắt nhau tại h a) chúng minh bedc nội tiếp b)chứng minh ae.ab=ad.ac c)đường tròn đường kính ah cắt đường tròn (o,r) tại f. chứng minh de af bc đồng quy tại 1 điểm MÌNH CẦN GẤP PHẦN C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x>=0. Nhận thấy x=0 không phải nghiệm của phương tình chia cả 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
\(\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\)thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu đk của t
=> t=3 \(\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
Vậy x={4;1}
gọi lượng nước có trong dung dịch đầu tiền là x lít ; lượng axit có trong dung dịch đầu tiên là y lít ( x,y > 0 )
Sau khi thêm 1 lít axit vào dung dịch thì nồng độ của dung dịch là 40% nên ta có phương trình :
\(\frac{y+1}{x+y+1}=\frac{2}{5}\Leftrightarrow2x-3y=3\)( 1 )
Sau khi thêm vào dung dịch mới 1 lít nước thì nồng độ của dung dịch là \(33\frac{1}{3}\%\)nên ta có phương trình :
\(\frac{y+1}{x+y+2}=\frac{1}{3}\Leftrightarrow x-2y=1\)( 2 )
Từ ( 1 ) và ( 2 ) ta có HPT : \(\hept{\begin{cases}2x-3y=3\\x-2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Vậy nồng độ axit trong dung dịch đầu tiền là : \(\frac{x}{x+y}.100\%=\frac{1}{1+3}.100\%=25\%\)
Câu hỏi là gì bạn?