Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x3 + ax2 + bx + 3) : (x2 - 2x - 1) = x + a - 2 dư x(b - 2a + 5) + a + 1
Để (x3 + ax2 + bx + 3) \(⋮\) (x2 - 2x - 1)
=> x(b - 2a + 5) + a + 1 = 0 \(\forall x\)
=> \(\hept{\begin{cases}b-2a+5=0\\a+1=0\end{cases}}\Rightarrow\hept{\begin{cases}b-2a=-5\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}b=-7\\a=-1\end{cases}}\)
a) x3 - 2x2 + x
= x(x2 - 2x + 1)
= x(x - 1)2
b) x2 - 2x - 15
= x2 - 2x + 1 - 16
= (x - 1)2 - 42
= (x - 5)(x + 3)
c) 5x2y3 - 25x3y4 + 10x3y3
= 5x2y3(1 - 5xy + 2x)
d) 12x2y - 18xy2 - 30y2
= 6y(2x2 - 3xy - 5y)
= 6y(2x2 + 2xy - 5xy - 5y)
= 6y[2x(x + y) - 5y(x + y)
= 6y(x + y)(2x - 5y)
e) 5(x - y) - y(x - y)
= (5 - y)(x - y)
g) 36 - 12x + x2
= (6 - x)2
h) 4x2 + 12x + 9
= (2x + 3)2
i) 11x + 11y - x2 - xy
= 11(x + y) - x(x + y)
= (!1 - x)(x + y)
a, \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
b, \(x^2-2x-15=\left(x^2-2x+1\right)-16=\left(x-1\right)^2-4^2=\left(x-5\right)\left(x+3\right)\)
c, \(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
d, \(12x^2y-18xy^2-30y^2=3y\left(4x^2-6xy-10y\right)\)
\(=3y\left[2y\left(2y-3x-5\right)\right]=6y^2\left(2y-3x-5\right)\)
e, \(5\left(x-y\right)-y\left(x-y\right)=\left(5-y\right)\left(x-y\right)\)
g, \(36-12x+x^2=\left(6-x\right)^2\)
h, \(4x^2+12x+9=\left(2x+3\right)^2\)
i, \(11x+11y-x^2-xy=11\left(x+y\right)-x\left(x+y\right)=\left(11-x\right)\left(x+y\right)\)
A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)
= (x+2y+3/2)2 + (y+5/2)2 + 15
=> A min = 15
Dấu "=" xảy ra khi y=-5/2 ; x=7/2