tìm nghiệm nguyên dương của phương trình: \(4y^4+6y^2-1=x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\Rightarrow xy+yz+zx=1\)
WLOG \(z\ge y\ge x\)
\(\Rightarrow VT=\frac{x}{\sqrt{y^2+1}}+\frac{y}{\sqrt{z^2+1}}+\frac{z}{\sqrt{x^2+1}}\)
Biến doi \(\sqrt{y^2+1}=\sqrt{y^2+xy+yz+zx}\)
Còn lại tương tự.
Theo bđt Holder:\(VT.VT.\left[\Sigma_{cyc}x\left(y^2+xy+yz+zx\right)\right]\ge\left(x+y+z\right)^3\)
\(\Rightarrow VT^2\ge\frac{\left(x+y+z\right)^3}{xy\left(x+2y\right)+yz\left(y+2z\right)+zx\left(z+2x\right)}\)
Giờ cần chứng minh: \(\frac{\left(x+y+z\right)^3}{xy\left(x+2y\right)+yz\left(y+2z\right)+zx\left(z+2x\right)}\ge\frac{9}{4}\)
\(\Leftrightarrow4\left(x^3+y^3+z^3\right)+3\left(x^2y+y^2z+z^2x\right)\ge6\left(xy^2+yz^2+zx^2\right)+3xyz\)
bđt cuối tương đương
\(\frac{1}{6}\left[\Sigma_{cyc}\left(5x+7y+3z\right)\left(x-y\right)^2\right]+3\left(x-y\right)\left(y-z\right)\left(z-x\right)\ge0\)
Đứng với cái mình đã WLOG ở trên
Mình nghĩ bài này có điều kiện a, b,c > 0.
Bạn nub đánh nhầm đoạn" \(VT^2\ge\frac{\left(x+y+z\right)^3}{..}\) ..Cần chứng minh..." rồi nhé, nhưng bất đẳng thức cần chứng minh cuối cùng vẫn đúng: \(4\left(x^3+y^3+z^3\right)+3\left(x^2y+y^2z+z^2x\right)\ge6\left(xy^2+yz^2+zx^2\right)+3xyz\)
Nhưng:
\(VT-VP=\frac{\Sigma\left(6xy+4y^2+yz+\frac{5}{2}z^2\right)\left(x-y\right)^2}{x+y+z}\ge0\)
Đúng vì x, y, z > 0 do a, b, c > 0.
\(\sqrt{x}-\sqrt[3]{x-1}+4x=5\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)-\sqrt[3]{x-1}+4x-4=0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}-\sqrt[3]{x-1}+4\left(x-1\right)=0\)
Có nhân tử x - 1 rồi nhé !
Vậy bán kính hình tròn là
15,7 : 3,14 : 2 = 2,5 (cm)
Vậy diện tích hình tròn là:
2,5 x 2,5 x 3,14 = 19,625(cm2)
Đ/s:19,625 cm2
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn
giúp mình đi chỉ cần hình thôi
Bạn vào câu hỏi tương tự:
https://olm.vn/hoi-dap/detail/240776023190.html