K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2020

Gọi vận tốc theo dự định là x ( km/h; > 5 ) 

Gọi thời gian theo dự định là t ( h; > 1,5)

Quãng đường AB là: xt  ( km) (1)

+) Mỗi h xe chạy nhanh hơn 10 (km) 

=> Vận tốc là: x + 10 (km/h ) 

khi đó đến sớm hơn 1,5 h 

=> Thời gian đi là: ( t - 1,5 ) ( h) 

=> Quãng đường đi là: ( x + 10 ) ( t - 1,5 )  km (2)

+)  Mỗi h xe chạy chậm hơn 5 (km) 

=> Vận tốc là: x - 5  (km/h ) 

khi đó đến muộn  hơn 1,5 h 

=> Thời gian đi là: ( t + 1 ) ( h) 

=> Quãng đường AB là: ( x - 5 ) ( t +1 ) km  (3) 

Từ (1) ; (2) ; (3) Ta có hệ: 

\(\hept{\begin{cases}xt=\left(x-5\right)\left(t+1\right)\\xt=\left(x+10\right)\left(t-1,5\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}-5t+x=5\\10t-1,5x=15\end{cases}}\Leftrightarrow\hept{\begin{cases}t=9\\x=50\end{cases}}\)

=> Quãng đường AB = 50.9 = 450  km 

Vậy:...

26 tháng 5 2020

a) Xét \(\Delta'=\left(m-1\right)^2-\left(m^2-3\right)=-2m+4\)

phương trình có hai nghiệm <=> \(\Delta'\ge0\Leftrightarrow-2m+4\ge0\Leftrightarrow m\le2\)(@@) 

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1x_2=m^2-3\\x_1+x_2=2\left(m-1\right)\end{cases}}\)

Không mất tính tổng quát: g/s: \(x_1=3x_2\)

=> \(4x_2=2\left(m-1\right)\Leftrightarrow x_2=\frac{m-1}{2}\)

=> \(x_1=\frac{3\left(m-1\right)}{2}\)

mà \(x_1x_2=m^2-3\)

=> \(\frac{3}{4}\left(m-1\right)^2=m^2-3\)

<=> \(3\left(m^2-2m+1\right)=4m^2-12\)

<=> \(\orbr{\begin{cases}m=-3+2\sqrt{6}\\m=-3-2\sqrt{6}\end{cases}}\) thỏa mãn 

Vậy ....

26 tháng 5 2020

a)

+) Với m = 0  thay vào phương trình ta có: 1 = 0 => loại 

+) Với m khác 0 

\(\Delta'=m^2-m=m\left(m-1\right)\)

Để phương trình có nghiệm điều kiện là: \(m\left(m-1\right)\ge0\)

TH1: m \(\ge\)0 và m - 1 \(\ge\)

<=> m \(\ge\) 0 và m \(\ge\)

<=> m \(\ge\)

 TH2: m \(\le\) 0 và m - 1  \(\le\)

<=> m \(\le\)0 và m \(\le\)1

<=> m \(\le\)

Đối chiếu điều kiên m khác 0

Vậy m < 0 hoặc m \(\ge\)1

+) Tính nghiệm của phương trình theo m. Tự làm áp dụng công thức

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

Theo định lí vi ét ta có: 

\(x_1x_2=\frac{1}{m};x_1+x_2=\frac{2m}{m}=2\)

Không mất tính tổng quát ta g/s: \(x_1=2x_2\)

=> \(3x_2=2\Leftrightarrow x_2=\frac{2}{3}\)=> \(x_1=\frac{4}{3}\)

Ta có: \(\frac{4}{3}.\frac{2}{3}=\frac{1}{m}\)

<=> \(m=\frac{9}{8}\)( thỏa mãn a )

Thử lại thỏa mãn 

Vậy m = 9/8

đề bài bị khuyết tật rồi kìa

25 tháng 5 2020

HSG Toán 9 tỉnh Nghệ An bảng A năm 2018-2019

Làm: ĐK \(x\ge\frac{-3}{2}\)

\(\sqrt{2x+3}=\frac{8x^3+4x}{2x+5}\Leftrightarrow\left(2x+5\right)\sqrt{2x+3}=8x^3+4x\)

\(\Leftrightarrow\left(\sqrt{2x+3}\right)^2+2\sqrt{2x+3}=\left(2x\right)^3+2\cdot2x\)

Đặt \(a=\sqrt{2x+3}\ge0;b=2x\) ta có:

\(a^3+2a=b^3+2b\Leftrightarrow\left(a-b\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+2\right]=0\Leftrightarrow a=b\)

\(\Rightarrow\sqrt{2x+3}=2x\Leftrightarrow\hept{\begin{cases}2x\ge0\\2x+3=4x^2\end{cases}\Leftrightarrow x=\frac{1+\sqrt{13}}{4}}\)

Vậy \(x=\frac{1+\sqrt{13}}{4}\)