K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

22 tháng 6 2020

  Áp dụng BĐT Cauchy Schwarz dạng engel , ta có :

\(VP=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{3^2}{3+3}=\frac{3}{2}\)

Dấu = xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy \(T\)đạt giá trị nhỏ nhất là \(\frac{3}{2}\)với x = y = z = 1

30 tháng 5 2020

Có 13 con cò

30 tháng 5 2020

21con cò hả?

Mình nghĩ vậy!Nếu đúng thì nhớ k nha!!

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

30 tháng 5 2020

Đặt: \(\frac{1}{y}=t\)> 0

Ta có: \(x+t\le1\)

\(P=\frac{xt}{2}+\frac{1}{xt}=\frac{xt}{2}+\frac{1}{32xt}+\frac{31}{32xt}\ge2\sqrt{\frac{xt}{2}.\frac{1}{32xt}}+\frac{31}{\frac{32\left(x+t\right)^2}{4}}=\frac{33}{8}\)

Dấu "=" xảy ra <=> x = t = 1/2 hay x = 1/2 và y = 2 

Vậy GTNN của P = 33/8 đạt tại x =1/2 và y =2 .

30 tháng 5 2020

Đặt: |y + 2 | = t ta có hệ:

\(\hept{\begin{cases}4x-t=3\\x+2t=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\t=1\end{cases}}\)

Với t = 1 ta có: | y + 2 | = 1 <=> y + 2 = 1 hoặc y + 2 = -1 <=> y = -1 hoặc y = - 3 

Vậy hệ có hai nghiệm: ( 1; -1) hoặc (1; -3) 

29 tháng 5 2020

ĐK: \(\hept{\begin{cases}x^2-1\ge0\\x^4-x^2+1\ge0\end{cases}}\)(@@)

\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)

<=> \(3\sqrt{x^2-1}+x^2-\sqrt{x^4-x^2+1}=0\)

<=> \(3\sqrt{x^2-1}+\frac{x^4-x^4+x^2-1}{x^2+\sqrt{x^4-x^2+1}}=0\)

<=> \(3\sqrt{x^2-1}+\frac{x^2-1}{x^2+\sqrt{x^4-x^2+1}}=0\)

<=> \(\sqrt{x^2-1}\left(3+\frac{\sqrt{x^2-1}}{x^2+\sqrt{x^4-x^2+1}}\right)=0\)

<=> \(\sqrt{x^2-1}=0\)

<=> x = 1 hoặc x = -1 thỏa mãn (@@) 

Kết luận:...