K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2020

ĐK: \(x\ge\frac{3}{2}\)

\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)

<=> \(\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}=0\)

<=> \(\frac{2x-4}{\sqrt{2x-3}+1}+\frac{x^4-4x^2}{x^2+1+\sqrt{6x^2+1}}=0\)

<=> \(\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{x^2+1+\sqrt{6x^2+1}}=0\)

<=> \(\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{x^2+1+\sqrt{6x^2+1}}\right)=0\)

<=> x - 2 = 0  ( vì \(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{x^2+1+\sqrt{6x^2+1}}\ge0\) với mọi \(x\ge\frac{3}{2}\))

<=> x = 2 thỏa mãn đk 

Vậy x = 2.

4 tháng 6 2020

Cô Chi ơi, cái ngoặc to là > 0 chứ nếu \(\ge\)thì nó có thể bằng 0 rồi

2 tháng 6 2020

tứ giác HEFG nội tiếp nên góc FEG = góc FHG = 20 ( 2 góc nội tiếp cùng chắn 1 cung)

góc HGE = góc HEG =40 (tam giác HEG cân tại H)

suy ra x=20+40=60 (góc ngoài tam giác )

2 tháng 6 2020

Do \(x_1< x_2\). Do đó: \(x_1=\frac{2n-1-1}{2}=n-1\) và \(x_2=\frac{2n-1+1}{2}=n\)

Ta có \(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3\)

\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)

Dấu "=" xảy ra <=> n=2

2 tháng 6 2020

Vì x< x2.Do đó x1=\(\frac{2n-1-1}{2}=n-1\)và x2=\(\frac{2n-1+1}{2}=n\)

Ta có:\(x_{1_{ }}^{2^{ }^{ }}-2x_{2_{ }}+3=\left(n-1\right)^2-2n+3\)

\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)

2 tháng 6 2020

Một người đều chơi 9 trận với 9 người người khác không có trận hòa. 

Do đó: \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)

Mà tổng số trận thắng bằng tổng số trận thua do đó:

\(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)

Ta có: \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+...+y_{10}^2\right)\)

\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+.....+\left(x_{10}^2-y_{10}^2\right)\)

\(=9\left(x_1-y_1\right)+9\left(x_2-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)

\(=9\left(x_1-y_1+x_2-y_2+....+x_{10}-y_{10}\right)\)

\(=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+y_3+....+y_{10}\right)\right]=0\)

Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)