1.Cho x,y,z khác 0 thõa mãn x+y+z=xyz và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính P= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2 -6x -x +3-2x2-10x=0
-17x+3=0
-17x=-3
x=\(\frac{17}{3}\)
A B C D d M N I
a, Xét tam giác ADC có : MN // DC hay MI // DC
Theo định lí Ta - lét ta có : \(\frac{MA}{MD}=\frac{IA}{IC}\)
b, Xét tam giác ABC có : AB // MN hay AB // IN
Theo định lí Ta - lét ta có : \(\frac{BN}{NC}=\frac{IA}{IC}\)
mà \(\frac{MA}{MD}=\frac{IA}{IC}\)( cmt )
Suy ra : \(\frac{MA}{MD}=\frac{NB}{NC}\)
Ta có: \(B=\frac{x^2+1}{x^2-x+1}\)
\(\Leftrightarrow B=\frac{3x^2+3}{3.\left(x^2-x+1\right)}\)
\(\Leftrightarrow B=\frac{x^2+2x+1+2.\left(x^2-x+1\right)}{3.\left(x^2-x+1\right)}\)
\(\Leftrightarrow B=\frac{\left(x+1\right)^2}{3.\left(x^2-x+1\right)}+\frac{2}{3}\)
Vì \(\frac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}\ge0\forall x\)( Điều này các bạn tự CM nhé )
\(\Rightarrow\)\(B\ge\frac{2}{3}\)\(\Rightarrow\)\(B_{min}=\frac{2}{3}\)
Dấu "=" Xảy ra khi: \(x+1=0\)\(\Leftrightarrow\)\(x=-1\)
Vậy \(B_{min}=\frac{2}{3}\)\(\Leftrightarrow\)\(x=-1\)
\(E=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]\)
\(=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-\frac{3x\left(x+1\right)}{3x}\right)\right]\)
\(=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2}{x+1}.\frac{\left(x+1\right)\left(1-3x\right)}{3x}\right]\)
\(=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right]=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right]\)
\(=\frac{x-1}{x}:2=\frac{x-1}{2x}\)hay \(E=\frac{x-1}{2x}\)
mình làm ví dụ một câu thôi nhé !
\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)=\frac{4x}{\left(x+1\right)^2}\)
\(\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right)=VP\)
\(\frac{4x}{\left(x-1\right)\left(x+1\right)}:\frac{x-1+x^2+x+2}{\left(x+1\right)\left(x-1\right)}=\frac{4x}{\left(x+1\right)^2}\)
\(\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}=\frac{4x}{\left(x+1\right)^2}\)
<=> 4x( x + 1 )^2 = 4x ( x + 1 )^2
<=> 4x ( x^2 + 2x + 1 ) = 4x ( x^2 + 2x + 1 )
<=> 4x^3 + 8x^2 + 4x - 4x^3 - 8x^2 - 4x = 0
<=> 0 = 0 ( Vậy ta có đpcm )
Ta có: \(\left(x^2+1\right)^2+3x.\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2+x.\left(x^2+1\right)+2x.\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+2x+1\right)+x.\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x+1\right)^2=0\)
Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)mà \(\left(x^2+x+1\right)\left(x+1\right)^2=0\)
\(\Rightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow\)\(x=-1\)
Vậy \(x=-1\)
Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)
\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\)
Mà x+y+z=xyz
=> P+2=3=>P=1
Vậy P=1