a,b dương
\(a^2+b^2=2a+b\)
\(A=a-b+ab\)
GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số lẻ liên tiếp là a; a+2
Theo đề bài
a(a+2)-(a+a+2)=167
axa+2xa-2xa-2=167
axa=169 => a=-13 hoặc a=13
+ a=13 => b=15
+a=-13 => b=-11
Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)
\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)
Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)
\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)
\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)
\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)
\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)
Tự giải tiếp :D
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\left(1\right)\)
ĐK: \(x\ge\frac{3}{2}\)
\(PT\left(1\right)\Leftrightarrow\left(\sqrt{6x^2+1}-5\right)-\left(\sqrt{2x-3}-1\right)-\left(x^2-4\right)=0\)
\(\Leftrightarrow\frac{6x^2-24}{\sqrt{6x^2+1}+5}-\frac{2x-4}{\sqrt{2x-3}+1}-\left(x-2\right)\left(x+2\right)=0\)
(vì \(\sqrt{6x^2+1}+5\ne0;\sqrt{2x-3}+1\ne0\forall x\ge\frac{3}{2}\))
\(\Leftrightarrow\left(x-2\right)\left(\frac{6\left(x+2\right)}{\sqrt{6x^2+1}+5}-\frac{2}{\sqrt{2x-3}+1}-\left(x+2\right)\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{6\left(x+2\right)}{\sqrt{6x^2+1}+5}-\frac{2}{\sqrt{2x-3}+1}-\left(x+2\right)=0\left(2\right)\end{cases}}\)
\(PT\left(2\right)\Leftrightarrow\left(x+2\right)\left(\frac{6}{\sqrt{6x^2+1}+1}-1\right)-\frac{2}{\sqrt{2x-3+1}}=0\)
Ta thấy x+1>0; \(\sqrt{6x^2+1}+5>6\forall x\ge\frac{3}{2}\Rightarrow\frac{6}{\sqrt{6x^2+1}+1}-1< 0\)
Vậy \(\left(x+2\right)\left(\frac{6}{\sqrt{6x^2+1}+5}-1\right)-\frac{2}{\sqrt{2x-3}+1}< 0\forall x\ge\frac{3}{2}\)
=> PT (2) vô nghiệm
KL: PT đã cho có nghiệm duy nhất là x=2
Bg
Hai số dương a, b có tổng bằng 2 --> a = 1 và b = 1 (vì 2 = 2 + 0 = 1 + 1; số dương là số > 0 nên a = 1 và b = 1)
Thay giá trị của a và b vào:
\(\left(1-\frac{4}{a^2}\right).\left(1-\frac{4}{b^2}\right)=\left(1-\frac{4}{1^2}\right).\left(1-\frac{4}{1^2}\right)=\left(1-4\right).\left(1-4\right)=-3.\left(-3\right)=9\)
Vậy giá trị nhỏ nhất của biểu thức trên là 9.
Bài làm:
Ta có: \(\left(1-\frac{4}{a^2}\right).\left(1-\frac{4}{b^2}\right)=\frac{a^2-4}{a^2}.\frac{b^2-4}{b^2}=\frac{\left(a-2\right)\left(a+2\right)}{a^2}.\frac{\left(b-2\right)\left(b+2\right)}{b^2}\left(1\right)\)
Thay \(2=a+b\)vào \(\left(1\right)\)
\(\left(1\right)=\frac{\left(a-a-b\right)\left(a+a+b\right)}{a^2}.\frac{\left(b-a-b\right)\left(b+a+b\right)}{b^2}\)
\(=\frac{\left(-b\right).\left(2a+b\right)}{a^2}.\frac{\left(-a\right).\left(2b+a\right)}{b^2}\)
\(=\frac{\left(2a+b\right)\left(2b+a\right)}{ab}\)
\(=\frac{2a^2+2b^2+5ab}{ab}\ge\frac{4ab+5ab}{ab}=9\)
Dấu "=" xảy ra khi: \(a=b=1\)
Vậy Min=9 khi a=b=1