Tháng 1, hai cửa hàng bán được 250kg gạo. Tháng 2, cửa hàng 1 bán được thêm 40kg gạo, cửa hàng 2 bán thêm được 70kg so với tháng 1. Biết số gạo tháng 2 của cửa hàng 1=\(\frac{5}{7}\)cửa hàng 2. Hỏi tháng 1 mỗi cửa hàng bán được bao nhiêu kg?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ đề này của bạn nên thêm điều kiện khi cộng vào mỗi chữ số của nó 1 đơn vị ta vẫn luôn được 1 số có 4 chữ số thì bài toán chắc sẽ dễ dàng giải quyết hơn đấy nhỉ!
Gọi số cần tìm là \(x^2=\overline{abcd}\) \(\left(a,b,c,d< 9\&\inℕ\right)\)
Theo đề bài khi cộng mỗi chữ số của nó thêm 1 đơn vị thì ta vẫn được 1 số chính phương nên đặt:
\(y^2=\overline{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
\(\Rightarrow\overline{abcd}+1111=y^2\)
\(\Leftrightarrow x^2+1111=y^2\Leftrightarrow y^2-x^2=1111\)
\(\Leftrightarrow\left(y-x\right)\left(y+x\right)=1111=11\cdot101=1\cdot1111\)
Dễ nhận thấy \(y+x>y-x>0\) nên ta xét các TH sau:
Nếu \(\hept{\begin{cases}y-x=11\\y+x=101\end{cases}}\Rightarrow\hept{\begin{cases}x=45\\y=56\end{cases}\left(tm\right)}\Rightarrow\overline{abcd}=2025\)
Nếu \(\hept{\begin{cases}y-x=1\\y+x=1111\end{cases}}\Rightarrow\hept{\begin{cases}x=555\\y=556\end{cases}}\Rightarrow ktm\)
Vậy số cần tìm là 2025
Gọi số cần tìm là a\(^2\), số mới được tạo thành b\(^2\)( a,b là số tự nhiên ) .
Theo đề bài , ta có :
\(b^2-a^2=1111\)( vì thêm mỗi chữ số 1 đơn vị )
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=1111=1111.1=101.11\)
Vì b > a nên b + a có thể bằng 1111 hoặc 101 , còn b - a chỉ có thể bằng 1 hoặc 11
Giải ra , ta được \(a=555,b=556\)( loại vì số cần tìm là số có 4 chữ số ) và \(a=45,b=56\)( thỏa mãn )
Vậy số cần tìm là \(45^2=2025\)
* Nguồn : https://cunghoctot.vn/forum/topic/nhien-la-so-chinh-phuong-co-4-chu-so
a) Áp dụng định lý Pi-ta-go vào \(\Delta\)vuông ABC có :
\(AB^2+AC^2=BC^2\Leftrightarrow BC=20\left(cm\right)\)
Do AD là phân giác \(\widehat{A}\)theo tính chất đường phân giác , ta có :
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{BD+CD}=\frac{3}{3+4}\Rightarrow\frac{BD}{BC}=\frac{3}{7}\)
\(\Rightarrow BD=\frac{3}{7}BC=\frac{60}{7}\)
\(\Rightarrow DC=BC-BD=\frac{80}{7}\)
b) AH là đường cao \(\Delta\)vuông ABC nên :
\(S_{\Delta ABC}=\frac{AH.BC}{2}=\frac{AB.AC}{2}\)
\(\Rightarrow AH=\frac{AB.C}{BC}=\frac{48}{5}\left(cm\right)\)
Ta có :
\(BH^2=AB^2-AH^2\Rightarrow BH=\frac{36}{5}\left(cm\right)\)
\(\Rightarrow DH=BD=BH=\frac{48}{35}\left(cm\right)\)
\(AD^2=DH^2+AH^2\Rightarrow AD=\frac{48\sqrt{2}}{7}\left(cm\right)\)
Ta có: \(\frac{x^2-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}=a\Leftrightarrow\frac{x^4+\frac{1}{x^4}-2}{x^4+\frac{1}{x^4}+2}=a^2\) (bình phương 2 vế)
\(\Leftrightarrow1-\frac{4}{x^4+\frac{1}{x^4}+2}=a^2\Leftrightarrow x^4+\frac{1}{x^4}+2=\frac{4}{1-a^2}\Leftrightarrow x^4+\frac{1}{x^4}=\frac{2+2a^2}{1-a^2}\)(1)
Lại có: \(\frac{x^2-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}=a\Leftrightarrow\frac{x^4-\frac{1}{x^4}}{\left(x^2+\frac{1}{x^2}\right)^2}=a\Leftrightarrow\frac{x^4-\frac{1}{x^4}}{x^4+\frac{1}{x^4}+2}=a\)
\(\Leftrightarrow\frac{x^4-\frac{1}{x^4}}{\frac{2+2a^2}{1-a^2}+2}=a\) ( thay (1) vào) \(\Leftrightarrow x^4-\frac{1}{x^4}=\frac{4a}{1-a^2}\) (2)
Từ (1) và (2) \(\Rightarrow M=\frac{x^4-\frac{1}{x^4}}{x^4+\frac{1}{x^4}}=\frac{\frac{4a}{1-a^2}}{\frac{2+2a^2}{1-a^2}}=\frac{2a}{1+a^2}\)
9x2 + 4y2 = 20xy
=> 9x2 - 20xy + 4y2 = 0
=> 9x2 - 18xy - 2xy + 4y2 = 0
=> 9x(x - 2y) - 2y(x - 2y) = 0
=> (9x - 2y)(x - 2y) = 0
=> \(\orbr{\begin{cases}9x=2y\\x=2y\end{cases}}\)
Khi x = 2y
=> 2y.3x = x.3x = 3x2 \(\ge\)0 (loại)
Khi 9x = 2y
=> 2y.3x = 9x.3x = 27x2 \(\ge0\)(loại)
Vậy không tính được B sao cho thỏa mãn đề bài
Ta có : x2 - 2y2 = xy
=> x2 - xy - 2y2 = 0
=> x2 + xy - 2xy - 2y2 = 0
=> x(x + y) - 2y(x + y) = 0
=> (x - 2y)(x + y) = 0
=> \(\orbr{\begin{cases}x-2y=0\\x+y=0\left(\text{loại}\right)\end{cases}\Rightarrow x=2y}\)
Thay x = 2y vào A ta có
\(A=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Ta có : \(4a^2+b^2=5ab\)
\(\Rightarrow4a^2-4ab+b^2=ab\)
\(\Rightarrow\left(2a-b\right)^2=ab\)
Vì \(0< b< 2a\)\(\Rightarrow2a-b>0\)
\(\Rightarrow2a-b=ab\)
\(\Rightarrow M=\frac{ab}{4a^2-b^2}=\frac{2a-b}{\left(2a-b\right)\left(2a+b\right)}=\frac{1}{2a+b}\)
Vậy \(M=\frac{1}{2a+b}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}-\frac{3}{abc}=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Lại có: \(N=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)
\(P=\frac{a-b}{a+b}\) \(\Leftrightarrow P^2=\left(\frac{a-b}{a+b}\right)^2=\frac{a^2+b^2-2ab}{a^2+b^2+2ab}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\)
Vì 0 < a < b => a - b < 0, a + b > 0 \(\Rightarrow P=\frac{a-b}{a+b}< 0\)
\(\Rightarrow P=\frac{1}{2}\)
Gọi khối lượng gạo cửa hàng 1 bán được là x ( 0 < x < 250 )
=> Khối lượng gạo cửa hàng 2 bán được là 250 - x
Tháng 2 cửa hàng 1 bán được thêm 40kg gạo => Khối lượng gạo tháng 2 = x + 40 ( kg )
Tháng 2 cửa hàng 2 bán được thêm 70kg gạo => Khối lượng gạo tháng 2 = 250 - x + 70 = 320 - x ( kg )
Vì số gạo tháng 2 của cửa hàng 1 = 5/7 số gạo của cửa hàng 2
=> Ta có phương trình : x + 40 = 5/7( 320 - x )
<=> x + 40 = 1600/7 - 5/7x
<=> x + 5/7x = 1600/7 - 40
<=> 12/7x = 1320/7
<=> x = 110 ( tm )
Vậy tháng 1 cửa hàng 1 bán được 110kg
tháng 1 cửa hàng 2 bán được 140kg
Cám ơn ạ ^^