K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2020

Do \(a,b,c\ge1\) nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

Mà \(\frac{4ab}{1+ab}=\frac{4\left(1+ab\right)-4}{1+ab}=4-\frac{4}{1+ab}\ge4-\frac{4}{a+b}\)

Tương tự:\(\frac{4bc}{1+bc}\ge4-\frac{4}{b+c};\frac{4ca}{1+ca}\ge4-\frac{4}{c+a}\)

Mặt khác:\(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\)

Tương tự:\(b^2\ge2b-1;c^2\ge2c-1\)

Khi đó ta có:

\(LHS\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+12-4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=S\)

Áp dụng AM - GM ta dễ có:\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\ge\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{8}{\left(a+b\right)^2}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

\(\Rightarrow S\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}+12-4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\)

\(\ge9\)

 Vậy ta có đpcm

Đẳng thức xảy ra tại \(a=b=c=1\)

6 tháng 7 2020

Mình cảm ơn bạn 

6 tháng 7 2020

a

Dễ thấy theo AM - GM ta có:

\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{y}{x}+\frac{x}{4y}\right)+\frac{3x}{4y}\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{4y}}+\frac{3\cdot2y}{4y}=\frac{5}{2}\)

Đẳng thức xảy ra tại \(x=2y\)

b

\(x^2+3+\frac{1}{x^2+3}=\left[\frac{\left(x^2+3\right)}{9}+\frac{1}{x^2+3}\right]+\frac{8\left(x^2+3\right)}{9}\)

\(\ge2\sqrt{\frac{x^2+3}{9}\cdot\frac{1}{x^2+3}}+\frac{8\left(x^2+3\right)}{9}=\frac{2}{3}+\frac{8\cdot3}{9}=\frac{10}{3}\)

Đẳng thức xảy ra tại x=0

5 tháng 7 2020

X= 2,503347166

5 tháng 7 2020

Đề bài : Tìm giá trị lớn nhất của \(\sqrt{x+4}+\sqrt{2-x}\)

Đặt \(A=\sqrt{x+4}+\sqrt{2-x}\)

\(\Leftrightarrow A^2=x+4+2-x+2\sqrt{\left(x+4\right)\left(2-x\right)}\)

\(\Leftrightarrow A^2\le6+\left(x+4\right)+\left(2-x\right)\)

\(\Leftrightarrow A^2\le12\)

\(\Leftrightarrow A\le2\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(x+4=2-x\)

\(\Leftrightarrow x=-1\)

Vậy \(Max_A=2\sqrt{3}\Leftrightarrow x=-1\)

5 tháng 7 2020

giải phương trình nha

6 tháng 7 2020

\(\hept{\begin{cases}x^3-x=x^2y-y\left(1\right)\\\sqrt{2\left(x^4+1\right)}-5\sqrt{\left|x\right|}+\sqrt{y}+2=0\left(2\right)\end{cases}}\)

điều kiện: \(y\ge0\)

\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=\pm1\end{cases}}\)

-nếu x=\(\pm\)1 thay vào phương trình (2) ta có: \(\sqrt{y}-1=0\Leftrightarrow y=1\)

-nếu \(x=y\ge0\)

khi đó \(\left(2\right)\Leftrightarrow\sqrt{2\left(x^4+1\right)}-4\sqrt{x}+2=0\left(3\right)\)

do \(2\left(x^4+1\right)\ge2\cdot2\sqrt{x^4\cdot1}=4x^2\Rightarrow\sqrt{2\left(x^4+1\right)}\ge2\left|x\right|=2x\)

nên \(VT\left(3\right)\ge2\left(x-2\sqrt{x}+1\right)=2\left(\sqrt{x}-1\right)^2\ge0\)

do đó \(pt\left(3\right)\Leftrightarrow\hept{\begin{cases}x^4=1\\\sqrt{x}-1=0\end{cases}\Leftrightarrow x=1\Rightarrow y=1}\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left\{\left(1,1\right);\left(-1;1\right)\right\}\)

6 tháng 8 2020

Hôm nay sol vài bài trên olm rồi off tiếp

\(\sqrt{xy+y}=\sqrt{y\left(x+1\right)}\)

ĐKXĐ: \(x>-1,y>0\)

Đặt \(\sqrt{x+1}=a;\sqrt{y}=b\left(a,b>0\right)\)

HPT \(\Leftrightarrow\hept{\begin{cases}a^2-1+\frac{1}{a}=\frac{4}{a+b}-1\\b^2+\frac{1}{b}=2ab\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}a^4+a^3b-3a+b=0\\2ab^2-b^3-1=0\end{cases}}\)

PT(2) \(\Leftrightarrow2ab^2=\left(b+1\right)\left(b^2-b+1\right)\Rightarrow a=\frac{\left(b+1\right)\left(b^2-b+1\right)}{2b^2}\)

Thay ngược lên pt(1) tương đương  \(\left(3b^6+8b^3+1\right)\left(b^3-1\right)^2=0\)

\(\Rightarrow b=1\rightarrow a=1\)

HPT có nghiệm duy nhất a = b = 1

6 tháng 8 2020

Khúc sau từ suy ra x, y nhé. Quên mất lỡ bấm gửi.