K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)

Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :

\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)

\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)

Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)

Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...

dấu = bạn tự xét nhé :V

13 tháng 7 2020

dấu = xảy ra ko đúng rồi phải

13 tháng 7 2020

Hỏi cái j về Free Fire đi, cái này Bạc k bt đâu !!

13 tháng 7 2020

Đúng đó Bạc hồi xưa cứ đến tiết Toán là lại trốn đi chơi net k à !!

13 tháng 7 2020

Có: a + b = ab \(\le\frac{\left(a+b\right)^2}{4}\)

=> a + b \(\ge4\)

\(\frac{1}{a^2+2a}+\frac{1}{b^2+2b}+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(\ge\frac{4}{a^2+b^2+2\left(a+b\right)}+\sqrt{\left(1+ab\right)^2}\)

\(=\frac{4}{a^2+b^2+2ab}+\left(1+a+b\right)=\frac{4}{\left(a+b\right)^2}+\left(a+b\right)+1\)

\(=\frac{4}{\left(a+b\right)^2}+\frac{a+b}{4^2}+\frac{a+b}{4^2}+\frac{7}{8}\left(a+b\right)+1\)

\(\ge3\sqrt[3]{\frac{4}{\left(a+b\right)^2}.\frac{a+b}{4^2}.\frac{a+b}{4^2}}+\frac{7}{8}.4+1=\frac{3}{4}+\frac{7}{2}+1\)

Dấu "=" xảy ra <=> a = b = 2

13 tháng 7 2020

ab = 2 => a = 2/b  

\(\frac{1}{a^2+2}+\frac{1}{b^2+2}=\frac{1}{\frac{4}{b^2}+2}+\frac{1}{b^2+2}=\frac{b^2}{2\left(2+b^2\right)}+\frac{1}{b^2+2}=\frac{b^2+2}{2\left(b^2+2\right)}=\frac{1}{2}\)

13 tháng 7 2020

Chứ không phải \(\le\)à 

13 tháng 7 2020

\(x-y-5=0\Rightarrow x=y+5\)

Ta có:

\(\left(y+5+y\right)^2+3\left(y+5+y\right)+2=0\)

\(\Leftrightarrow\left(2y+5\right)^2+3\left(2y+5\right)+2=0\)

\(\Leftrightarrow4y^2+20y+25+6y+15+2=0\)

\(\Leftrightarrow4y^2+26y+42=0\)

\(\Leftrightarrow\left(y+3\right)\left(2y+7\right)=0\)

\(\Leftrightarrow y=-3;y=-\frac{7}{2}\)

Thay vào tìm x nốt