K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2020

Mình xài p,q,r nhé :))

Ta có:

\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)

\(a^4+b^4+c^4=1-4q+2q^2+4r\)

Khi đó BĐT tương đương với:

\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)

\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)

\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )

21 tháng 7 2020

\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)

Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)

\(=p^3-3pq+3r\)

--------------------------------------

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)

\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)

\(=p^4-4p^2q+2q^2+4pr\)

Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq

16 tháng 7 2020

mng ơi giúp mình với ạ

17 tháng 7 2020

mình trả lời hơi muộn :(

A B C H

1, Theo giả thiết ta có C = 45* nên tam giác ABC là tam giác vuông cân

Suy ra AB = AC = 2 (cm) Mà theo đánh giá của Pitago thì :BC^2 = 8 <=> BC = căn 8

Ta có hệ thức lượng sau : AB.AC=AH.BC <=> 4=căn 8 . AH<=> AH=2/căn2

Lại có hệ thức lượng sau : AC^2=CH.BC<=>4=căn 8 . CH <=> CH=2/căn2

Mặt khác : +)Cos alpha = AB/BC = 2/căn8 = 1/căn2

+)Cos beta = AC/BC = 2/căn8 = 1/căn2

+) Sin alpha = AC/BC = 2/căn8 = 1/căn2

+) Sin beta = AB/BC = 2/căn8 = 1/căn2

Vậy ...

Mấy câu còn lại để từ từ mình làm dần

16 tháng 7 2020

+) Đặt: AB = AC = a 

=> BC = a\(\sqrt{2}\)

D là trung điểm của AC  -> AD = DC = a/2

=> BD = \(\frac{\sqrt{5}}{2}\)a ( pitago cho tam giác ABD vuông tại A ) 

+) \(\Delta\)ABD ~ \(\Delta\)ICD ( tự chứng minh ) 

=> \(\frac{AD}{DI}=\frac{BD}{CD}\Rightarrow\frac{\frac{a}{2}}{DI}=\frac{\frac{\sqrt{5}a}{2}}{\frac{a}{2}}\Rightarrow DI=\frac{a}{2\sqrt{5}}\)

+) \(\Delta\)DIC vuông tại I có IH là đường cao đáy DC

=> \(DI^2=DH.DC\Rightarrow DH=\frac{\frac{a^2}{4.5}}{\frac{a}{2}}=\frac{a}{10}\)=> AH = AD + DH = a/2 + a/10 = 3/5 (1)

\(IH^2=DI^2-DH^2=\frac{a^2}{20}-\frac{a^2}{100}=\frac{a^2}{25}\)=> IH = a/5 (2) 

Từ (1) và (2) => AH = 3 IH

16 tháng 7 2020

Cho cái hình, mới hc lp 8, ko bt lm

A B C D I H

16 tháng 7 2020

Ta có: 

\(\frac{3}{a}+\frac{3}{b}=3\left(\frac{1}{a}+\frac{1}{b}\right)\ge3.\frac{4}{a+b}=4.\frac{3}{a+b}\)

\(\frac{2}{b}+\frac{2}{c}\ge4.\frac{2}{b+c}\)

\(\frac{1}{c}+\frac{1}{a}\ge4.\frac{1}{a+c}\)

=> \(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)

Dấu "=" xảy ra <=> a = b = c

16 tháng 7 2020

Áp dụng Cauchy Schwarz

\(A=\frac{1}{x}+\frac{1}{y}+\frac{9}{z}\)

\(\ge\frac{\left(1+1+3\right)^2}{x+y+z}=\frac{25}{x+y+z}=25\)

Đẳng thức xảy ra bạn tự giải