Rút gọn A=\(\left(\frac{\sqrt{x}}{\sqrt{x-1}}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
\(A=\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x+4}{x+\sqrt{x}+1}\right)\)
\(\Leftrightarrow A=\frac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-x-4}{x+\sqrt{x}+1}\)
\(\Leftrightarrow A=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{\sqrt{x}-3}{x+\sqrt{x}+1}\)
\(\Leftrightarrow A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\cdot\frac{x+\sqrt{x}+1}{\sqrt{x}-3}\)
\(\Leftrightarrow A=\frac{\sqrt{x}}{\sqrt{x}-3}\)
quy luật là: số dương là cộng thêm 16 số âm là trừ đi16 1+16=17+16=33 -9-16=-25-16=-41 mấy cái còn lại làm tương tự theo quy luật đấy nha bạn
\(\left|x\left(u+v\right)-y\left(u-v\right)\right|^2\le\left(x^2+y^2\right)\left[\left(u+v\right)^2+\left(u-v\right)^2\right]=1\cdot\left(2u^2+2v^2\right)=2\)
\(\Rightarrow\left|x\left(u+v\right)-y\left(u-v\right)\right|\le\sqrt{2}\)
@Hải Ngọc Cảm ơn câu trả lời của bạn, nhưng ở đoạn đầu bạn nhầm dấu cộng thành dấu trừ rồi! :))
\(B=\left(\frac{1}{\sqrt{x}-2}-\frac{2}{\sqrt{x}+2}+\frac{x}{x\sqrt{x}-4\sqrt{x}}\right):\left(\frac{6-x}{\sqrt{x}+2}+2+\sqrt{x}\right)\)
\(B=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\right):\left(\frac{6-x+2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\right)\)
\(B=\left(\frac{\sqrt{x}+2-2\sqrt{x}+4+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{6-x+2\sqrt{x}+4+x+2\sqrt{x}}{\sqrt{x}+2}\right)\)
\(B=\frac{6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+2}{10+4\sqrt{x}}\)
\(B=\frac{6}{\sqrt{x}-2}\cdot\frac{1}{2\left(5+2\sqrt{x}\right)}\)
B = \(\frac{3}{\left(\sqrt{x}-2\right)\left(5+2\sqrt{x}\right)}\)
+) \(B=6\sqrt{x-2}+6\sqrt{5-x}\Leftrightarrow B^2=\left(6\sqrt{x-2}+6\sqrt{5-x}\right)^2\)
\(=36\left(x-2\right)+36\left(5-x\right)+72\sqrt{\left(x-2\right)\left(5-x\right)}\ge108\Rightarrow B\ge6\sqrt{3}\)
+) \(A=B+2\sqrt{5-x}\ge6\sqrt{3}\)
Vậy \(A_{min}=6\sqrt{3}\)khi x=5
+) Đặt \(a=\sqrt{x-2};b=\sqrt{5-x}\)
+) Ta có: \(a^2+b^2=3\)
+) \(\left(a^2+b^2\right)\left(6^2+8^2\right)\ge\left(6a+8b\right)^2\Leftrightarrow\left(6a+8b\right)^2\le300\Rightarrow6a+8b\le10\sqrt{3}\)
Dấu = xảy ra khi \(\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{\sqrt{x-2}}{6}=\frac{\sqrt{5-x}}{8}\Leftrightarrow\frac{x-2}{36}=\frac{5-x}{64}\Leftrightarrow64x-128=180-36x\Leftrightarrow308=100x\)
\(\Leftrightarrow x=3.08\)
Vậy \(A_{max}=10\sqrt{3}\)khi x=3.08
Trả lời:
\(x-5\sqrt{x}+6=x-3\sqrt{x}-2\sqrt{x}+6\)
\(=\sqrt{x}.\left(\sqrt{x}-3\right)-2.\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)\)
\(x-9+y-2\sqrt{xy}=\left(x-2\sqrt{xy}+y\right)-9\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-9\)
\(=\left(\sqrt{x}-\sqrt{y}-3\right).\left(\sqrt{x}-\sqrt{y}+3\right)\)
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}.\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}+1\right)\)
Học tốt
Trả lời:
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(A=\left[\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right]\div\left[\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\right]\)
\(A=\left[\frac{\sqrt{x}.\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right]\div\left[\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}+\frac{2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\right]\)
\(A=\left[\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right]\div\left[\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\right]\)
\(A=\left[\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right]\div\left[\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\right]\)
\(A=\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\div\frac{1}{\sqrt{x}-1}\)
\(A=\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\times\frac{\sqrt{x}-1}{1}\)
\(A=\frac{x-1}{\sqrt{x}}\)
Học tốt