\(\sqrt{16\left(x-3\right)}\) = \(\sqrt{20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào thống kê hỏi đáp xem nhé. Bài này chỉ cần biểu diễn dưới dạng tổng bình phương là xong.
ta có \(\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\ge\frac{3}{4}\) (***)
do ab+bc+ca=3 nên
VT (***)=\(\frac{a^3}{b^2+ab+bc+ca}+\frac{b^3}{c^2+ab+bc+ca}+\frac{c^3}{a^2+ab+bc+ca}\)
\(=\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c^3}{\left(a+b\right)\left(c+a\right)}\)
áp dụng bđt AM-GM ta có \(\frac{a^3}{\left(b+c\right)\left(c+a\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge\frac{3a}{4}\)
\(\Rightarrow\frac{a^3}{\left(b+c\right)\left(c+a\right)}\ge\frac{5a-2b-c}{8}\left(1\right)\)
chứng minh tương tự ta cũng được
\(\hept{\begin{cases}\frac{b^3}{\left(c+a\right)\left(a+b\right)}\ge\frac{5b-2c-a}{8}\left(2\right)\\\frac{c^3}{\left(a+b\right)\left(c+a\right)}\ge\frac{5c-2a-b}{8}\left(3\right)\end{cases}}\)
cộng theo vế với vế của (1),(2) và (3) ta được VT (***) \(\ge\frac{a+b+c}{4}\)
mặt khác ta dễ dàng chứng minh được \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)
đẳng thức xảy ra khi a=b=c=1 (đpcm)
* \(4\)và \(1+2\sqrt{2}\)
Ta có \(3=\sqrt{9}\)
\(2\sqrt{2}=\sqrt{2^2.2}=\sqrt{8}\)
Ta lại có \(8< 9\Leftrightarrow\sqrt{8}< \sqrt{9}\)
Hay \(2\sqrt{2}< 3\)\(\Leftrightarrow1+2\sqrt{2}< 1+3\Leftrightarrow1+2\sqrt{2}< 4\)
Đặt \(A=\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
\(\sqrt{2}A=\sqrt{2}.\left(\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\right)\)
\(\sqrt{2}A=\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}\)
\(\sqrt{2}A=\sqrt{7-2\sqrt{7}+1}+\sqrt{7+2\sqrt{7}+1}\)
\(\sqrt{2}A=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(\sqrt{2}A=\sqrt{7}-1+\sqrt{7}+1\)
\(\sqrt{2}A=2\sqrt{7}\)
\(A=\sqrt{14}\)
Học tốt
Gọi \(A=\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
\(< =>A^2=4-\sqrt{7}+4+\sqrt{7}+2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)
\(< =>A^2=8+2\sqrt{4^2-7}=8+2\sqrt{16-7}\)
\(< =>A^2=8+2\sqrt{9}=8+2\sqrt{3^2}=8+2.|3|\)
\(< =>A^2=8+2.3=8+6=14\)
\(< =>A=\sqrt{14}\)
\(ĐKXĐ:x^2-x\ge0;x^2+x-2\ge0\)
\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\left(1\right)\)
Ta luôn có:\(\sqrt{x^2-x}\ge0\forall x\inℝ\)
\(\sqrt{x^2+x-2}\ge0\forall x\inℝ\)
\(\Rightarrow\sqrt{x^2-x}+\sqrt{x^2+x-2}\ge0\left(2\right)\)
Từ (1) và (2)
Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x^2+x-2=0\end{cases}}\)
Ta có:\(x^2-x=0\)
Nếu x=0(TM)
Nếu \(x\ne0\Rightarrow x\left(x-1\right)=0\Rightarrow x-1=0\Rightarrow x=1\)(TM)
Vậy phương tình có 2 nghiệm phận biệt là 0;1
\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
<=> \(\sqrt{x^2-x}=-\sqrt{x^2+x-2}\)
bình phương 2 vế ta có:
<=> x^2 - x = x^2 + x - 2
<=> -x = x - 2
<=> -x - x = -2
<=> -2x = -2
<=> x = 1
Em mới học lớp 7 nên có j thông cảm nha
Ta có:Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền,ta có:
\(BH.BC=AB^2=6^2=36\)
Mà BC=BH+HC=BH+9
\(\Rightarrow BH\left(BH+9\right)=36\Rightarrow BH^2+9.BH=36\Rightarrow BH^2+2.\frac{9}{2}.BH+\left(\frac{9}{2}\right)^2=36+\frac{81}{4}\)
\(\Rightarrow\left(BH+\frac{9}{2}\right)^2=\frac{225}{4}=\left(\frac{15}{2}\right)^2\)
\(\Rightarrow BH+\frac{9}{2}=\frac{15}{2}\left(BH+\frac{9}{2}>0\right)\)
\(\Rightarrow BH=3cm\)
mik nghĩ x = 3
\(\sqrt{16\left(x-3\right)}=\sqrt{20}\left(x\ge3\right)\)
\(< =>16\left(x-3\right)=20\)
\(< =>16x-48=20\)
\(< =>16x=68\)
\(< =>x=4\frac{1}{4}=\frac{17}{4}\)