\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(x-7\sqrt{x-3}+9=0\)
\(\sqrt{2x+1}+\sqrt{3-2x}=2\)
Giải phương trình
Giúp mình với mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{x^2+y^2}+\frac{501}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+\frac{500}{xy}\)
\(\ge\frac{5}{\left(x+y\right)^2}+\frac{500}{\frac{\left(x+y\right)^2}{2}}=5+1000=1005\)
Dấu "=" xảy ra \(< =>x=y=\frac{1}{2}\)
đoán là sai
\(A=\frac{1}{x^2+y^2}+\frac{501}{xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1001}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1001}{\frac{\left(x+y\right)^2}{2}}\ge4+2002=2006\)
Dấu "=" xảy ra khi x = y = 1/2
Đề bài có vấn đề do BF và CE cắt nhau tại A nhé
Theo đề bài sai này => A trùng K à
Bạn check lại xem
Đề bài đúng là cho K là giao điểm của BE và CF chứ ko phải K là giao điểm của BF và CE nhé.
1) Có: góc BFC và góc BEC đều là góc nội tiếp chắn nửa đường tròn
=> BFC=BEC=90 độ
Xét tứ giác AEKF có BFC+BEC=90+90=180 độ ; 2 góc này ở vị trí đối nhau
=> Tứ giác AEKF nội tiếp (ĐPCM)
2) Mặt khác ta cũng có BFC=BEC=90 độ (cmt)
Mà 2 đỉnh E; F là 2 đỉnh kề nhau cùng nhìn BC dưới 2 góc bằng nhau
=> Tứ giác BCEF nội tiếp
=> góc AFE=góc ACB.
Xét tam giác AEF và tam giác ABC có:
\(\hept{\begin{cases}chungEAF\\AFE=ACB\left(cmt\right)\end{cases}}\)
=> Tam giác AEF đồng dạng tam giác ABC (gg)
=> Ta có ĐPCM
3) Áp dụng HTL trong tam giác vuông BFC có đường cao FH
=> \(FH^2=HB.HC\)
Thay \(FH=4cm;HB=8cm\)
=> \(HC=2cm\)
Do \(BC=HB+HC=8+2=10\left(cm\right)\)
Vậy BC dài 10 (cm)
**** Bạn tự vẽ hình nha
Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó
\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)
b)
\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)
\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)
Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)
để ý và dùng cauchy ngược là oke
\(\sqrt{1-a^2}=\sqrt{\left(1-a\right)\left(1+a\right)}\le\frac{\left(1-a\right)+\left(1+a\right)}{2}=1\)
đề này có vấn đề thì phải, ai mò được cho mình xin cái dấu "=" nào
Bài làm:
a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ
=> \(1+\sqrt{2}\) vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ
b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ
=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ
=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ
\(\Rightarrow B^2=\left(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\right)^2\)
\(=\left(a+2\sqrt{a-1}\right)+2\sqrt{\left(a+2\sqrt{a-1}\right)\left(a-2\sqrt{a-1}\right)}+\left(a-2\sqrt{a-1}\right)\)
\(=2a+2\sqrt{a^2-4\left(a-1\right)}=2\left(a+\sqrt{a^2-4a+4}\right)=2\left[a+\sqrt{\left(a-2\right)^2}\right]\)
\(=2\left(a+\left|a-2\right|\right)\)
\(\Rightarrow B=\sqrt{2\left(a+\left|a-2\right|\right)}\)
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................