Tam giác ABC vuông tại A ( AB < AC ) , đường cao AH . Lấy M thuộc HC sao cho : HM = AH . Qua M kẻ đường thẳng vuông góc với AB cắt AC tại D .
Chứng minh : 1AH2 =1AD2 +1AC2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(p^2=8q+9\)
<=>\(p^2-9=8q\)
<=>\(\left(p-3\right)\left(p+3\right)=8q\)
Do q là số nguyên tố=> q chia hết cho 1 hoặc chính nó =>Một trong hai số \(p-3\)và \(p+3\)bằng 8
=>\(\orbr{\begin{cases}p-3=8\\p+3=8\end{cases}}\)<=>\(\orbr{\begin{cases}p=11\\p=5\end{cases}}\)<=>\(\orbr{\begin{cases}q=14\left(lọai\right)\\q=2\end{cases}}\)
Vậy \(p=5\)và \(q=2\)
Sai đề rồi bạn ơi, 2 đường thẳng song song thì làm sao mà cắt nhau được.
Gọi F là điểm đối xứng của CC qua AA
Ta được \(AF=AC=AB\)
\(A,F,C\)thẳng hàng
\(\Rightarrow\Delta BFC\perp B\)
Ta có: \(\Delta ABC\)cân tại A(gt)
\(AD\perp BC\left(gt\right)\)
\(\Rightarrow BD=DC\)
mà \(AF=AC\)
\(\Rightarrow AD\)//\(BF\)mà \(AD=\frac{BF}{2}\)(tính chất đường trung bình)
Áp dụng hệ thức lượng vào \(\Delta BFC\perp B\)đường cao BE ta được:
\(\frac{1}{BE^2}=\frac{1}{BF^2}+\frac{1}{BC^2}\)
\(\Leftrightarrow\frac{1}{BE^2}=\frac{1}{4AD^2}+\frac{1}{BC^2}\)
\(\Leftrightarrow\frac{1}{4k^2}=\frac{1}{4n^2}+\frac{1}{4m^2}\)
\(\Leftrightarrow\frac{1}{k^2}=\frac{1}{n^2}+\frac{1}{m^2}\left(đpcm\right)\)
#Shinobu Cừu
a) ĐKXĐ : \(x\ge-3\)
\(\sqrt{x+3}\ge5\)
\(\Leftrightarrow x+3\ge25\)
\(\Leftrightarrow x\ge22\)
Kết hợp điều kiện \(\Rightarrow x\ge22\)
Vậy..................................
a)
pt <=> \(x^2=324\)
<=> \(\orbr{\begin{cases}x=18\\x=-18\end{cases}}\)
Vậy tập hợp nghiệm của pt là: S={18; -18}
b) pt <=> \(16x^2=5\)
<=> \(x^2=\frac{5}{16}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{5}}{4}\\x=-\frac{\sqrt{5}}{4}\end{cases}}\)
a. \(-x^2+324=0\)
\(\Leftrightarrow-x^2=-324\)
\(\Leftrightarrow x^2=324=18^2\)
\(\Leftrightarrow x=18;x=-18\)
b. \(16x^2-5=0\)
\(\Leftrightarrow16x^2=5\)
\(\Leftrightarrow x^2=\frac{5}{16}=\frac{\sqrt{5}}{4}^2\)
\(\Leftrightarrow x=\frac{\sqrt{5}}{4}\)
a)
Do: \(y=\sqrt{x+2}\)
<=> \(y^2=x+2\)
<=> \(x=y^2-2\)
Khi đó: \(A=y^2-2-2y\)
Vậy \(A=y^2-2y-2\)
b)
\(A=y^2-2y-2\left(cmt\right)\)
\(A=\left(y^2-2y+1\right)-3\)
\(A=\left(y-1\right)^2-3\)
Do \(\left(y-1\right)^2\ge0\forall y\)
=> \(\left(y-1\right)^2-3\ge-3\)
=> \(A\ge-3\)
Vậy A MIN = -3 <=> \(\left(y-1\right)^2=0\)
<=> \(y=1\)
Do: \(y=\sqrt{x+2}\)
<=> \(\sqrt{x+2}=1\)
<=> \(x+2=1\)
<=> \(x=-1\)