Cho a , b , c là số dương thực tùy ý . Chứng minh rằng :
\(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{a^2+b^2+c^2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(B=\frac{\sqrt{2+\sqrt{3}}}{2}\div\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
\(B=\frac{\sqrt{4+2\sqrt{3}}}{2}\div\left(\frac{\sqrt{4+2\sqrt{3}}}{2}-\frac{2\sqrt{3}}{3}+\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{3}}\right)\)
\(B=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}\div\left(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}-\frac{2\sqrt{3}}{3}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{3}}\right)\)
\(B=\frac{\sqrt{3}+1}{2}\div\left(\frac{\sqrt{3}+1}{2}-\frac{2\sqrt{3}}{2}+\frac{\left(\sqrt{3}+1\right)\sqrt{3}}{6}\right)\)
\(B=\frac{\sqrt{3}+1}{2}\div\left[\frac{3\left(\sqrt{3}+1\right)-6\sqrt{3}+3+\sqrt{3}}{6}\right]\)
\(B=\frac{\sqrt{3}+1}{2}\div\frac{6-2\sqrt{3}}{6}\)
\(B=\frac{\sqrt{3}+1}{2}.\frac{6}{6-2\sqrt{3}}\)
\(B=\frac{3+2\sqrt{3}}{2}\)
A B C H
Ta có : BH + CH = 64 + 81 = 145 (cm)
Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có AH là đường cao , ta có :
+) \(AB^2=BH.CH\)
\(\Leftrightarrow AB^2=64.145=9280\)
\(\Leftrightarrow AB=\sqrt{9280}=8\sqrt{145}\left(cm\right)\)
+) \(AC^2=BC.CH\)
\(\Leftrightarrow AC^2=81.145=11745\)
\(\Leftrightarrow AC=\sqrt{11745}=9\sqrt{145}\left(cm\right)\)
Ta có :
\(\sin B=\frac{AC}{BC}=\frac{9\sqrt{145}}{145}=\frac{9}{\sqrt{145}}\)
\(\Rightarrow\widehat{B}=48^o22'\)( cái này bấm máy ra nha )
Xét tam giác ABC có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Leftrightarrow\widehat{C}=180^o-90^o-48^o22'=41^o38'\)
Vậy .......
Bài làm:
Ta có: \(x+\sqrt{\frac{5}{x^2+2x\sqrt{5}+5}}\)
\(=x+\frac{\sqrt{5}}{\sqrt{\left(x+\sqrt{5}\right)^2}}\)
\(=x+\frac{\sqrt{5}}{x+\sqrt{5}}\)
\(=\frac{x^2+x\sqrt{5}+\sqrt{5}}{x+\sqrt{5}}\)
Nếu đề là rút gọn G thì...
đk: \(x\ge0;x\ne1\)
Ta có:
\(G=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{4\sqrt{x}}{x+\sqrt{x}+1}-\frac{2\sqrt{x}+1}{x\sqrt{x}-1}\right).\left(\sqrt{x}+\frac{2\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(G=\frac{\left(x+\sqrt{x}+1\right)\sqrt{x}-4\left(\sqrt{x}-1\right)\sqrt{x}-2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}-1}\)
\(G=\frac{x\sqrt{x}+x+\sqrt{x}-4x+4\sqrt{x}-2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x-\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}-1}\)
\(G=\frac{x\sqrt{x}-3x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
\(G=\frac{\left(\sqrt{x}-1\right)^3.\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2.\left(x+\sqrt{x}+1\right)}=\sqrt{x}-1\)
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được
\(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\)
Ta lại có \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
Do đó ta được \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{a^2+b^2+c^2}{3}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
p/s: check