giải phương trình
\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{x^3-4x^2+8x-5}=2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left(x+y\right)^2-2xy=3\\\left(x+y\right)\left(x^2-xy+y^2\right)=27\end{cases}}\)
Đặt S = x + y ; P = xy
\(\hept{\begin{cases}S^2-2P=3\\S\left(S^2-2P-P\right)=27\end{cases}}\)
\(\hept{\begin{cases}S^2-2P=3\\S\left(3-P\right)=27\end{cases}}\)
\(\hept{\begin{cases}S^2-2P=3\\3-P=\frac{27}{S}\end{cases}}\)
\(\hept{\begin{cases}S^2-2\left(\frac{3S-27}{S}\right)=3\\P=\frac{3S-27}{S}\end{cases}}\)
\(\hept{\begin{cases}S^3-6S+54=3\\P=\frac{3S-27}{S}\end{cases}}\)
\(\hept{\begin{cases}S^3-6S+51=0\\P=\frac{3S-27}{S}\end{cases}}\)
Tới đây giải như bình thường nha
Bài làm:
a) \(\sqrt{4-\sqrt{7}}=\frac{\sqrt{2\left(4-\sqrt{7}\right)}}{\sqrt{2}}=\sqrt{\frac{8-2\sqrt{7}}{2}}=\sqrt{\frac{7-2\sqrt{7}+1}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}=\frac{\left(\sqrt{7}-1\right)\sqrt{2}}{2}=\frac{\sqrt{14}-\sqrt{2}}{2}\)
b) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\) (đề vậy chứ)
\(=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2\)
c) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5-4\sqrt{5}+4}-\sqrt{5+4\sqrt{5}+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
d) \(\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\left|\sqrt{x-1}-1\right|\)
Mik chỉ bt làm thế này thôi bạn áp dụng vào bài nhá
cos75 = sin(90-75) = sin15
cos18 = sin(90-18) = sin72
Vì 15 < 65 < 70 < 72 < 79
Nên sin15 < sin 65 < sin70 < sin72 < sin79
Tít cho mik